Advertisement

Journal of Polymers and the Environment

, Volume 16, Issue 3, pp 192–197 | Cite as

Formed-in-place Polyelectrolyte Complex Membranes for Atrazine Recovery from Aqueous Media

  • Odilio B. G. Assis
  • Douglas de Britto
Original Paper

Abstract

A permeable system composed of a polyelectrolyte complex (PEC) membrane formed by alternated deposition of chitosan (CHI) and carboxymethylcellulose (CMC) onto a porous solid substrate was investigated. The films, with thicknesses not superior to 20 nm, were obtained by a self-assembly technique, i.e., by direct dipping of chemically cleaned porous glass membranes, into concentrated polymeric precursor solutions. The resulting depositions have irregular structures and reduce the initial membrane permeability, especially for higher flux velocities. Concerning filtration tests for herbicide removal in aqueous medium, the chitosan deposition attained better results. A tentative model of binding involving hydrogen bonding and/or charge-transfer to nonspecific sites available dynamically as a function of the conformational estate of the deposited polymers is proposed for polysaccharide-herbicide interactions.

Keywords

Polyelectrolyte complex Adsorption Surface analysis Chitosan Carboxymethylcellulose 

Notes

Acknowledgements

This research had financial support from FAPESP, CNPq and Embrapa.

References

  1. 1.
    Hallberg GR (1988) Amer J Altern Agric 2:3CrossRefGoogle Scholar
  2. 2.
    Wu TL, Lambert L, Hastings D, Banning D (1980) Bull Environ Contam Toxicol 24:411CrossRefGoogle Scholar
  3. 3.
    USEPA (1976) Quality criteria for water. US Gov Print Office, Washington, DCGoogle Scholar
  4. 4.
    Wauchope RD (1992) Rev Environ Contam Toxicol 123:1Google Scholar
  5. 5.
    Ritter WF, Scarborough RW, Chirnside AEM (1994) Soil J Irrig Drain Engrg 120:634CrossRefGoogle Scholar
  6. 6.
    Renner R (2003) Environ Sci Technol 37:46ACrossRefGoogle Scholar
  7. 7.
    Phelps TJ, Niedzielsji JJ, Schram R M, Herbes SE, White DC (1990) Appl Environ Microbiol 56:1702Google Scholar
  8. 8.
    Weber-Shirk M, Dick RI (1997) J Am Water Works Assoc 89:87Google Scholar
  9. 9.
    Bai R, Tien C (2000) Colloids Surf A Physicochem Eng Asp 165:95CrossRefGoogle Scholar
  10. 10.
    Etemadi O, Petrisor IG, Kim D, Wan M-W, Yen TF (2003) Soil Sediment Contam 12:647CrossRefGoogle Scholar
  11. 11.
    Assis OBG, Claro LC (2003) Electron J Biotechnol 6:14CrossRefGoogle Scholar
  12. 12.
    Weetall HH (1993) Appl Biochem Biotechnol 41:157CrossRefGoogle Scholar
  13. 13.
    Wang X, Spencer G (1998) J Appl Polym Sci 67:513CrossRefGoogle Scholar
  14. 14.
    Groves JT, Boxer SG (2002) Acc Chem Res 35:149CrossRefGoogle Scholar
  15. 15.
    Sackmann E (1996) Science 271:43CrossRefGoogle Scholar
  16. 16.
    Deisingh AK, Thompson M (2004) Can J Microbiol 50:69CrossRefGoogle Scholar
  17. 17.
    Jednačk-Bisĉan J, Pravdiĉ V (1982) J Colloid Interface Sci 90:44CrossRefGoogle Scholar
  18. 18.
    Kern W (1993) In: Kern W (ed) Handbook of semiconductor wafer cleaning technology. Noyes Publications, New Jersey, pp 03–57Google Scholar
  19. 19.
    Assis OBG, Claro LC (1999) J Non-Cryst Solids 247:237CrossRefGoogle Scholar
  20. 20.
    Chartier P (1997) Verre 3:5Google Scholar
  21. 21.
    Biesheuvel PM, Veen M, van der Norde W (2005) J Phys Chem B 109:4172CrossRefGoogle Scholar
  22. 22.
    McEldowney S, Fletcher M (1987) Arch Microbiol 148:57CrossRefGoogle Scholar
  23. 23.
    Mayers D (1991) Surfaces, Interfaces and colloids. VCH Publishers Inc., NY, 432 pGoogle Scholar
  24. 24.
    Kumar MNVR (2000) Reactive Funct Polym 46:1CrossRefGoogle Scholar
  25. 25.
    Adb-El-Rehim HA, Hegazy-El-Sayed A, Diaa DA(2006) J Macromol Sci Pure Appl Chem 43:101CrossRefGoogle Scholar
  26. 26.
    Zeronian SH (1985) Cellulose chemistry and it´s applications. Ellis Horwood Limited, New York, pp 159–174Google Scholar
  27. 27.
    Assis OBG, Vieira DC, Ferrante M (2001) Glass Technol 42:101Google Scholar
  28. 28.
    Kaneno J, Kohama R, Miyazaki M, Uehara M, Kanno K, Fujii M, Shimizu H, Maeda H (2003) New J Chem 27:1765Google Scholar
  29. 29.
    Innocentini MDM, Pardo ARF, Pandolfelli VC (2000) J Am Ceram Soc 83:220CrossRefGoogle Scholar
  30. 30.
    Kislenko VN (2006) In: Somasundaran S (Ed) Encyclopedia of surface and colloid science. CRC Press, Boca Raton, pp 4766–4779Google Scholar
  31. 31.
    Joanny JF, Castelnovo M, Netz R (2000) J Phys Condens Matter 12:A1Google Scholar
  32. 32.
    Priel Z, Silberberg A (2003) J Polym Sci Polym Phys Ed 16:1917Google Scholar
  33. 33.
    Assis OBG, Bernades-Filho R, Vieira DC, Campana-Filho SP (2002) Int J Polym Mater 51:633CrossRefGoogle Scholar
  34. 34.
    Guin JA (1972) Indust Eng Chem Fundam 11:345CrossRefGoogle Scholar
  35. 35.
    Hampton JHD, Savage SB, Drew RAL (1993) Chem Eng Sci 48:1601CrossRefGoogle Scholar
  36. 36.
    Tsuchida E, Abe K (1982) Adv Polym Sci 45:1CrossRefGoogle Scholar
  37. 37.
    Navarro RR, Wada S, Tatsumi K (2005) J Hazard Mater 123:203CrossRefGoogle Scholar
  38. 38.
    Larson RA, Weber EJ (1994) Reaction mechanisms in environmental organic chemistry. CRC Press Inc, Boca Raton, pp 103–167Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Embrapa Instrumentação AgropecuáriaSao CarlosBrazil

Personalised recommendations