Journal of Polymers and the Environment

, Volume 16, Issue 2, pp 94–102 | Cite as

Cotton Fibre-reinforced Thermosets Versus Ramie Composites: A Comparative Study using Petrochemical- and Agro-based Resins

  • Jörg Müssig
Original Paper


Natural fibres offer an interesting alternative to petrochemical products. Reclaimed cotton is mainly used as a low cost fibre to “fill” composites used as interior parts in the automotive industry. Mechanical requirements of such composites are low and the potential of the cotton-fibre to reinforce plastics is not used adequately. This paper gives background information and discusses the use of the cotton fibres in composites compared to ramie fibres. In this study the fibre strength was tested with a Dia-Stron device, fineness was tested with Fibreshape. A roller card is well suited to process fibres to a multi layer web. Cotton and ramie fibres were embedded in epoxy resin and a bio-based resin PTP®. The composites were tested for impact and tensile properties. The results show that mechanical properties of the composites are strongly influenced by fibre properties. The data and results demonstrate the important role force-elongation characteristics of fibre play in optimising the properties of natural fibre composites. Cotton with its morphological and mechanical properties can play a more crucial role to optimise products with a view to improve the impact properties.


Cotton Ramie Agro-based resin PTP Fibre properties 



The author thanks Mr. Sebastian Rau and Mrs. Birgit Pfeiffer for their support in the fibre quality measurements and the composite production and testing. We are much indebted to Mr. Uwe Schönfeld, Leader of R&D at the company Bio-Composites And More GmbH, Ipsheim, Germany for providing us with the biobased resin PTP®-L and his support.


  1. 1.
    Müssig J, Karus M, Franck RR (2005) In: Franck RR (ed) Bast and other plant fibres. Woodhead Publishing, Cambridge, UK, pp 345–376Google Scholar
  2. 2.
    Hughes M (2004) In: Baillie C (ed) Green composites––polymer composites and the environment. Woodhead Publishing, Cambridge, UK, pp 233–251Google Scholar
  3. 3.
    Pal PK (1984) Plastic Rubber Process Appl 4:215–219Google Scholar
  4. 4.
    McMullen P (1984) Composites 15(3):222–230CrossRefGoogle Scholar
  5. 5.
    Eisele D (1994) Textil praxis international (Jan/Feb 1994), pp 68–76 (in German)Google Scholar
  6. 6.
    Harig H, Müssig J (1999) In: H. Harig, Langenbach CJ (ed) Neue Materialien für innovative Produkte -Entwicklungstrends und gesellschaftliche Relevanz. Bd. 3. Springer Verlag, Berlin, Germany, pp 235–251 (in German)Google Scholar
  7. 7.
    Karus M, Kaup M (2002) J Indus Hemp 7:119–131CrossRefGoogle Scholar
  8. 8.
    Karus M, Ortmann S, Vogt D (2005) Kunststoffe Plast Europe 7:1–3Google Scholar
  9. 9.
    Bollmann G, Hartmann S, Reiff K (1986) In: Osnabrück F (ed) Verbundwerkstoffe, Kontaktstudiengang und werkstofftechnisches Kolloquium, Fachhochschule Osnabrück, Germany (9, May 1986), pp 156–170 (in German)Google Scholar
  10. 10.
    Müller DH, Krobjilowski A, Müssig J (2001) In: National Cotton Council of America (ed) Fourth international Nonwovens symposium during the Beltwide cotton conferences, Anaheim, CA, USA 2001-01-12–2001-01-13, National Cotton Council of America, Memphis, TNGoogle Scholar
  11. 11.
    Hanselka H, Herrmann AS (1995) In: Messe Frankfurt GmbH (ed) 7th Int Techtextil Symposium, Neue Verbundtextilien und Composites, Textilarmierte Werkstoffe part 2, Messe Frankfurt GmbH, Frankfurt, Germany, pp 1–8 (in German)Google Scholar
  12. 12.
    Jiang L, Hinrichsen G (1999) Angew Makromol Chem 268:13–17CrossRefGoogle Scholar
  13. 13.
    Jiang L, Hinrichsen G (1999) Angew Makromol Chem 268:18–21CrossRefGoogle Scholar
  14. 14.
    Stanojlovic-Davidovic A, Bergeret A, Benezet JC, Ferry L, Crespy A (2005) In: Royal Institute of Technology (ed) EcoComp 2005, 3rd international conference on eco-composites, Stockholm, Sweden, 2005-06-20–2005-06-21, Universitetsservice US AB,, Stockholm, Sweden, CD-ROM Proceedings
  15. 15.
    Foulk JA, Chao WY, Akin DE, Dodd RB, Layton PA (2006) J Environ Polym Environ 14:15–25CrossRefGoogle Scholar
  16. 16.
    Müssig J, Rau S, Herrmann A (2006a) J Nat Fiber 3:59–80CrossRefGoogle Scholar
  17. 17.
    Eichhorn SJ, Young RJ (2003) Compos Sci Technol 63:1225–1230CrossRefGoogle Scholar
  18. 18.
    FIBRE (1994) Bremer Baumwoll-Rundtest 1994/1––evaluation of the test results. In: Faserinstitut Bremen e.V., FIBRE, Baumwollbörse B (eds) Bremen, Germany, pp 1–18Google Scholar
  19. 19.
    Müssig J, Schmehl M, von Buttlar H-B, Schönfeld U, Arndt K (2006b) Indus Crop Product 24:132–145CrossRefGoogle Scholar
  20. 20.
    Schönfeld U (1996) European Patent, EP0836 627Google Scholar
  21. 21.
    Schönfeld U (2000) In: C.A.R.M.E.N. (ed) Eighth symposium „Im Kreislauf der Natur––Naturstoff für die moderne Gesellschaft“ Nachwachsende Rohstoffe auf dem Weg ins 21. Jahrhundert (3–4, July 2000), C.A.R.M.E.N., Würzburg, Germany, pp 1–11 (in German)Google Scholar
  22. 22.
    DIN EN 61 (1977) Ref. No. DIN EN 61 Nov 1977. German/European Standard (in German)Google Scholar
  23. 23.
    DIN EN ISO 179 (1997) Ref. Nr. DIN EN ISO 179: 1997-03. German/European Standard (in German)Google Scholar
  24. 24.
    Sachs L (1984) Angewandte Statistik––Planung und Auswertung Methoden und Modelle, 6th edn. Springer, Berlin, pp 228–230 (in German)Google Scholar
  25. 25.
    Riedel U, Gassan J, Karus M, Müssig J, Prömper E, Schönberger D, Sperber V (2005) In: Arbeitsgemeinschaft Verstärkte Kunststoffe––Technische Vereinigung e.V. (AVK-TV) (ed) Internationale AVK-TV Tagung für verstärkte Kunststoffe und duroplastische Formmassen, Eighth Internationale AVK-TV Tagung, Baden-Baden, Germany, 2005-09-27 till 2005-09-28, AVK-TV, Frankfurt/Main, Germany, pp A 3–1–A 3–11Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Hochschule Bremen - University of Applied Sciences, Biomimetics/Biological MaterialsBremenGermany

Personalised recommendations