Advertisement

Journal of Polymers and the Environment

, Volume 14, Issue 1, pp 15–25 | Cite as

Analysis of Flax and Cotton Fiber Fabric Blends and Recycled Polyethylene Composites

  • Jonn A. Foulk
  • Wayne Y. Chao
  • Danny E. Akin
  • Roy B. Dodd
  • Patricia A. Layton
Article

Abstract

Manufacturing composites with polymers and natural fibers has traditionally been performed using chopped fibers or a non-woven mat for reinforcement. Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be processed into a yarn and then manufactured into a fabric for composite formation. Fabric directly impacts the composite because it contains various fiber types via fiber or yarn blending, fiber length is often longer due to requirements in yarn formation, and it controls the fiber alignment via weaving. Composites created with cotton and flax-containing commercial fabrics and recycled high-density polyethylene (HDPE) were evaluated for physical and mechanical properties. Flax fiber/recycled HDPE composites were easily prepared through compression molding using a textile preform. This method takes advantage of maintaining cotton and flax fiber lengths that are formed into a yarn (a continuous package of short fibers) and oriented in a bidirectional woven fabric. Fabrics were treated with maleic anhydride, silane, enzyme, or adding maleic anhydride grafted polyethylene (MAA-PE; MDEX 102-1, Exxelor® VA 1840) to promote interactions between polymer and fibers. Straight and strong flax fibers present problems because they are not bound as tightly within yarns producing weaker and less elastic yarns that contain larger diameter variations. As the blend percentage and mass of flax fibers increases the fabric strength, and elongation generally decrease in value. Compared to recycled HDPE, mechanical properties of composite materials (containing biodegradable and renewable resources) demonstrated significant increases in tensile strength (1.4–3.2 times stronger) and modulus of elasticity (1.4–2.3 times larger). Additional research is needed to improve composite binding characteristics by allowing the stronger flax fibers in fabric to carry the composites load.

Keywords

Composite cotton fibers fabric flax fibers recycled high-density polyethylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joseph, M. 1980Essentials of TextilesHolt Rinehart and WinstonNY309Google Scholar
  2. 2.
    A. Dixit and T. Hai. (2002) Flax pulp applications: more than just specialty products. 88th Annu. Meet. Tech. Sect. Can. Pulp Pap, Assoc. Prepr. Vol. A, A277–283.Google Scholar
  3. 3.
    Saheb, D., Jog, J. 1999Adv. Poym. Tehnol18351363Google Scholar
  4. 4.
    Daimler Chrysler (2001) Natural fibers replace glass fibers. Umwelt-Umweltbericht 2001 Environmental Report, pp. 3. http://www.daimlerchrysler.com.
  5. 5.
    Velde, K., Kiekens, P. 2001aPolym. Test20885893Google Scholar
  6. 6.
    Mueller, D., Krobjilowski, A. 2003J. Ind. Textiles33111130Google Scholar
  7. 7.
    Svensson, N. (1997) in Niches in the World of Textiles Vol. 1, Papers presented at the 77th World Conference of the Textile Institute, May 22–24, 1996, Tampere, Finland. The Textile Institute, Manchester, UK, pp. 433–449.Google Scholar
  8. 8.
    Cheremisinoff, N. 1997Handbook of Engineering Polymeric MaterialsMarcel Dekker Inc.NY888Google Scholar
  9. 9.
    Czekalski, J., Jackowski, T., Kruciska, I. 2000Textile Asia313439Google Scholar
  10. 10.
    Pan, N. 1996Compos. Sci. Tech56311327CrossRefGoogle Scholar
  11. 11.
    Bledzki, A., Reihmane, S., Gassan, J. 1996J. Appl. Polym. Sci5913291336CrossRefGoogle Scholar
  12. 12.
    Gassan, J., Bledzki, A. 1999Compos. Sci. Technol5913031309CrossRefGoogle Scholar
  13. 13.
    Lewin, M., Pearce, E. 1998Handbook of Fiber ChemistryMarcel Dekker IncNY1105Google Scholar
  14. 14.
    Foulk, J., Chao, W., Akin, D., Dodd, R., Layton, P. 2004J. Polym. Environ12165171CrossRefGoogle Scholar
  15. 15.
    Weyenberg, I., Ivens, J., Coster, A., Kino, B., Baetens, E., Verpoest, I. 2003Compos. Sci. Technol6312411246Google Scholar
  16. 16.
    S. Panigrahi, T. Powell, B. Wang, L. Tabil, W. Crerar and S. Sokansanj (2003) The effect of chemical pretreatments on flax fibre biocomposites. CSAE/ASAE Annual Intersectional Meeting Paper no. RRV03-0018. October 3–4, 2004, Fargo, ND.Google Scholar
  17. 17.
    Van de Velde, K., Kiekens, P. 2001bJ. Thermopl. Mat14244260Google Scholar
  18. 18.
    Pattanakul, C., Selke, S., Lai, C., Miltz, J. 1990J. Appl. Polym. Sci4321472150Google Scholar
  19. 19.
    ASTM International1994aStandard Test Method for Breaking Strength and Elongation of Cotton Fibers (Flat Bundle Method) (D-1445-95). Annual Book of Standards, Section 7.01, TextilesASTM InternationalWest Conshohocken, PA392404Google Scholar
  20. 20.
    ASTM International1994bStandard Test Method for Micronaire Reading of Cotton Fibers (D-1448–90). Annual Book of Standards, Section 7.01, TextilesASTM InternationalWest Conshohocken, PA405407Google Scholar
  21. 21.
    ASTM International2004Standard Test Method for Assessing Clean Flax Fiber Fineness (D7025-04). Annual Book of Standards Volume: 07.02, TextilesASTM InternationalWest Conshohocken, PA106110Google Scholar
  22. 22.
    Gassan, J., Bledzki, A. 1997Compos. Part A28A10011005Google Scholar
  23. 23.
    Akin, D., Foulk, J., Dodd, R., McAlister, D. 2001J. Biotechnol89193203Google Scholar
  24. 24.
    ASTM International1994fStandard Test Method for Tensile Properties of Thin Plastic Sheeting (D-882–91). Annual Book of Standards, Section 8.01, PlasticsASTM InternationalWest Conshohocken, PA194202Google Scholar
  25. 25.
    ASTM International1993aStandard Test Method for Fabric Count of Woven Fabric (D-3775). Annual Book of Standards, Section 7.02, TextilesASTM InternationalWest Conshohocken, PA9092Google Scholar
  26. 26.
    ASTM International1994cStandard Test Method for Measuring Thickness of Textile Materials (D-1777). Annual Book of Standards, Section 7.01, TextilesASTM InternationalWest Conshohocken, PA477478Google Scholar
  27. 27.
    ASTM International1994dStandard Test Method for Linear Density of Textile Fibers (D-1577). Annual Book of Standards, Section 7.01, TextilesASTM InternationalWest Conshohocken, PA429435Google Scholar
  28. 28.
    ASTM International1994eStandard Test Method for Tensile Properties of Yarn by Single Strand Method (D-2256). Annual Book of Standards, Section 7.01, TextilesASTM InternationalWest Conshohocken, PA594602Google Scholar
  29. 29.
    ASTM International2001Standard Test Method for Unevenness of Textile Strands Using Capacitance Testing Equipment (D-6197). Annual Book of Standards, Section 7.01, TextilesASTM InternationalWest Conshohocken, PA340344Google Scholar
  30. 30.
    ASTM International1993bStandard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Force) (D-5035). Annual Book of Standards, Section 7.02, TextilesASTM InternationalWest Conshohocken, PA726731Google Scholar
  31. 31.
    ASTM International1994gStandard Test Method for Apparent Density of Rigid Cellular Plastics (D-1622–93). Annual Book of Standards, Section 8.01, PlasticsASTM InternationalWest Conshohocken, PA369371Google Scholar
  32. 32.
    ASTM International1999Standard Test Method for Water Absorption of Plastics (D-570-98). Annual Book of Standards, Section 8.01, PlasticsASTM InternationalWest Conshohocken, PA3133Google Scholar
  33. 33.
    McCreight, D., Feil, R., Booterbaugh, J., Backe, E. 1997Short Staple Yarn ManufacturingCarolina Academic PressDurham, NC535Google Scholar
  34. 34.
    Morton, W., Hearle, J. 1993Physical Properties of Textile FibersThe Textile InstituteManchester, UK725Google Scholar
  35. 35.
    Anonymous1992Horizons Int123839Google Scholar
  36. 36.
    Bhattacharya, S., Shaw, J. 2004Textile Res. J74622628Google Scholar
  37. 37.
    Ganan, P., Mondragon, I. 2002Polym. Compos23383394Google Scholar
  38. 38.
    Evans, J., Akin, D., Morrison, W., Himmelsbach, D., Foulk,  J. 2002Textile Res. J72579585Google Scholar
  39. 39.
    Tserki, V., Matzinos, P., Panayiotou, C. 2003Appl. Polym. Scic8818251835Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Jonn A. Foulk
    • 1
  • Wayne Y. Chao
    • 2
  • Danny E. Akin
    • 3
  • Roy B. Dodd
    • 4
  • Patricia A. Layton
    • 2
  1. 1.Cotton Quality Research StationUSDA-ARSClemsonUSA
  2. 2.Department of Forestry and Natural ResourcesClemson UniversityClemsonUSA
  3. 3.R. B. Russell Agricultural Research CenterUSDA-ARSAthensUSA
  4. 4.Department of Agricultural and Biological EngineeringClemson UniversityClemsonUSA

Personalised recommendations