Skip to main content
Log in

Analysis of Flax and Cotton Fiber Fabric Blends and Recycled Polyethylene Composites

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Manufacturing composites with polymers and natural fibers has traditionally been performed using chopped fibers or a non-woven mat for reinforcement. Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be processed into a yarn and then manufactured into a fabric for composite formation. Fabric directly impacts the composite because it contains various fiber types via fiber or yarn blending, fiber length is often longer due to requirements in yarn formation, and it controls the fiber alignment via weaving. Composites created with cotton and flax-containing commercial fabrics and recycled high-density polyethylene (HDPE) were evaluated for physical and mechanical properties. Flax fiber/recycled HDPE composites were easily prepared through compression molding using a textile preform. This method takes advantage of maintaining cotton and flax fiber lengths that are formed into a yarn (a continuous package of short fibers) and oriented in a bidirectional woven fabric. Fabrics were treated with maleic anhydride, silane, enzyme, or adding maleic anhydride grafted polyethylene (MAA-PE; MDEX 102-1, Exxelor® VA 1840) to promote interactions between polymer and fibers. Straight and strong flax fibers present problems because they are not bound as tightly within yarns producing weaker and less elastic yarns that contain larger diameter variations. As the blend percentage and mass of flax fibers increases the fabric strength, and elongation generally decrease in value. Compared to recycled HDPE, mechanical properties of composite materials (containing biodegradable and renewable resources) demonstrated significant increases in tensile strength (1.4–3.2 times stronger) and modulus of elasticity (1.4–2.3 times larger). Additional research is needed to improve composite binding characteristics by allowing the stronger flax fibers in fabric to carry the composites load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Joseph (1980) Essentials of Textiles Holt Rinehart and Winston NY 309

    Google Scholar 

  2. A. Dixit and T. Hai. (2002) Flax pulp applications: more than just specialty products. 88th Annu. Meet. Tech. Sect. Can. Pulp Pap, Assoc. Prepr. Vol. A, A277–283.

  3. D. Saheb J. Jog (1999) Adv. Poym. Tehnol 18 IssueID4 351–363 Occurrence Handle1:CAS:528:DyaK1MXntVOgsL0%3D

    CAS  Google Scholar 

  4. Daimler Chrysler (2001) Natural fibers replace glass fibers. Umwelt-Umweltbericht 2001 Environmental Report, pp. 3. http://www.daimlerchrysler.com.

  5. K. Velde ParticleVan de P. Kiekens (2001a) Polym. Test 20 IssueID8 885–893

    Google Scholar 

  6. D. Mueller A. Krobjilowski (2003) J. Ind. Textiles 33 IssueID2 111–130 Occurrence Handle1:CAS:528:DC%2BD3sXptlWrtrk%3D

    CAS  Google Scholar 

  7. Svensson, N. (1997) in Niches in the World of Textiles Vol. 1, Papers presented at the 77th World Conference of the Textile Institute, May 22–24, 1996, Tampere, Finland. The Textile Institute, Manchester, UK, pp. 433–449.

  8. N. Cheremisinoff (1997) Handbook of Engineering Polymeric Materials Marcel Dekker Inc. NY 888

    Google Scholar 

  9. J. Czekalski T. Jackowski I. Kruciska (2000) Textile Asia 31 IssueID6 34–39

    Google Scholar 

  10. N. Pan (1996) Compos. Sci. Tech 56 IssueID3 311–327 Occurrence Handle10.1016/0266-3538(95)00114-X

    Article  Google Scholar 

  11. A. Bledzki S. Reihmane J. Gassan (1996) J. Appl. Polym. Sci 59 IssueID8 1329–1336 Occurrence Handle10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0 Occurrence Handle1:CAS:528:DyaK28Xnt1aguw%3D%3D

    Article  CAS  Google Scholar 

  12. J. Gassan A. Bledzki (1999) Compos. Sci. Technol 59 IssueID9 1303–1309 Occurrence Handle10.1016/S0266-3538(98)00169-9 Occurrence Handle1:CAS:528:DyaK1MXkslOnsLc%3D

    Article  CAS  Google Scholar 

  13. M. Lewin E. Pearce (1998) Handbook of Fiber Chemistry Marcel Dekker Inc NY 1105

    Google Scholar 

  14. J. Foulk W. Chao D. Akin R. Dodd P. Layton (2004) J. Polym. Environ 12 IssueID3 165–171 Occurrence Handle10.1023/B:JOOE.0000038548.73494.59 Occurrence Handle1:CAS:528:DC%2BD2cXmvVartbY%3D

    Article  CAS  Google Scholar 

  15. I. Weyenberg ParticleVan de J. Ivens A. Coster ParticleDe B. Kino E. Baetens I. Verpoest (2003) Compos. Sci. Technol 63 IssueID9 1241–1246

    Google Scholar 

  16. S. Panigrahi, T. Powell, B. Wang, L. Tabil, W. Crerar and S. Sokansanj (2003) The effect of chemical pretreatments on flax fibre biocomposites. CSAE/ASAE Annual Intersectional Meeting Paper no. RRV03-0018. October 3–4, 2004, Fargo, ND.

  17. K. Van de Velde P. Kiekens (2001b) J. Thermopl. Mat 14 IssueID3 244–260 Occurrence Handle1:CAS:528:DC%2BD3MXkt1Omurg%3D

    CAS  Google Scholar 

  18. C. Pattanakul S. Selke C. Lai J. Miltz (1990) J. Appl. Polym. Sci 43 2147–2150

    Google Scholar 

  19. InstitutionalAuthorNameASTM International (1994a) Standard Test Method for Breaking Strength and Elongation of Cotton Fibers (Flat Bundle Method) (D-1445-95). Annual Book of Standards, Section 7.01, Textiles ASTM International West Conshohocken, PA 392–404

    Google Scholar 

  20. InstitutionalAuthorNameASTM International (1994b) Standard Test Method for Micronaire Reading of Cotton Fibers (D-1448–90). Annual Book of Standards, Section 7.01, Textiles ASTM International West Conshohocken, PA 405–407

    Google Scholar 

  21. InstitutionalAuthorNameASTM International (2004) Standard Test Method for Assessing Clean Flax Fiber Fineness (D7025-04). Annual Book of Standards Volume: 07.02, Textiles ASTM International West Conshohocken, PA 106–110

    Google Scholar 

  22. J. Gassan A. Bledzki (1997) Compos. Part A 28A 1001–1005 Occurrence Handle1:CAS:528:DyaK1cXmsl2ktQ%3D%3D

    CAS  Google Scholar 

  23. D. Akin J. Foulk R. Dodd D. McAlister (2001) J. Biotechnol 89 IssueID2–3 193–203 Occurrence Handle1:CAS:528:DC%2BD3MXlslChtLc%3D

    CAS  Google Scholar 

  24. InstitutionalAuthorNameASTM International (1994f) Standard Test Method for Tensile Properties of Thin Plastic Sheeting (D-882–91). Annual Book of Standards, Section 8.01, Plastics ASTM International West Conshohocken, PA 194–202

    Google Scholar 

  25. InstitutionalAuthorNameASTM International (1993a) Standard Test Method for Fabric Count of Woven Fabric (D-3775). Annual Book of Standards, Section 7.02, Textiles ASTM International West Conshohocken, PA 90–92

    Google Scholar 

  26. InstitutionalAuthorNameASTM International (1994c) Standard Test Method for Measuring Thickness of Textile Materials (D-1777). Annual Book of Standards, Section 7.01, Textiles ASTM International West Conshohocken, PA 477–478

    Google Scholar 

  27. InstitutionalAuthorNameASTM International (1994d) Standard Test Method for Linear Density of Textile Fibers (D-1577). Annual Book of Standards, Section 7.01, Textiles ASTM International West Conshohocken, PA 429–435

    Google Scholar 

  28. InstitutionalAuthorNameASTM International (1994e) Standard Test Method for Tensile Properties of Yarn by Single Strand Method (D-2256). Annual Book of Standards, Section 7.01, Textiles ASTM International West Conshohocken, PA 594–602

    Google Scholar 

  29. InstitutionalAuthorNameASTM International (2001) Standard Test Method for Unevenness of Textile Strands Using Capacitance Testing Equipment (D-6197). Annual Book of Standards, Section 7.01, Textiles ASTM International West Conshohocken, PA 340–344

    Google Scholar 

  30. InstitutionalAuthorNameASTM International (1993b) Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Force) (D-5035). Annual Book of Standards, Section 7.02, Textiles ASTM International West Conshohocken, PA 726–731

    Google Scholar 

  31. InstitutionalAuthorNameASTM International (1994g) Standard Test Method for Apparent Density of Rigid Cellular Plastics (D-1622–93). Annual Book of Standards, Section 8.01, Plastics ASTM International West Conshohocken, PA 369–371

    Google Scholar 

  32. InstitutionalAuthorNameASTM International (1999) Standard Test Method for Water Absorption of Plastics (D-570-98). Annual Book of Standards, Section 8.01, Plastics ASTM International West Conshohocken, PA 31–33

    Google Scholar 

  33. D. McCreight R. Feil J. Booterbaugh E. Backe (1997) Short Staple Yarn Manufacturing Carolina Academic Press Durham, NC 535

    Google Scholar 

  34. W. Morton J. Hearle (1993) Physical Properties of Textile Fibers The Textile Institute Manchester, UK 725

    Google Scholar 

  35. InstitutionalAuthorNameAnonymous (1992) Horizons Int 12 IssueID12 38–39

    Google Scholar 

  36. S. Bhattacharya J. Shaw (2004) Textile Res. J 74 IssueID7 622–628 Occurrence Handle1:CAS:528:DC%2BD2cXmtlCqur8%3D

    CAS  Google Scholar 

  37. P. Ganan I. Mondragon (2002) Polym. Compos 23 IssueID3 383–394 Occurrence Handle1:CAS:528:DC%2BD38XltVyisrc%3D

    CAS  Google Scholar 

  38. J. Evans D. Akin W. Morrison D. Himmelsbach J. Foulk (2002) Textile Res. J 72 IssueID7 579–585 Occurrence Handle1:CAS:528:DC%2BD38Xlt1Ojs7k%3D

    CAS  Google Scholar 

  39. V. Tserki P. Matzinos C. Panayiotou (2003) Appl. Polym. Scic 88 IssueID7 1825–1835 Occurrence Handle1:CAS:528:DC%2BD3sXitlOksrg%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonn A. Foulk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulk, J.A., Chao, W.Y., Akin, D.E. et al. Analysis of Flax and Cotton Fiber Fabric Blends and Recycled Polyethylene Composites. J Polym Environ 14, 15–25 (2006). https://doi.org/10.1007/s10924-005-8703-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-005-8703-1

Keywords

Navigation