Skip to main content
Log in

Dynamic Bandwidth Allocation for Video Traffic Using FARIMA-Based Forecasting Models

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In this work time series forecasting models and techniques are implemented to video traffic as part of three dynamic bandwidth allocation schemes. Traffic produced by videos is known to exhibit characteristics such as long and short range dependencies but as it is shown here non-linearity and conditional volatility may also appear as potential characteristics and then affect the choice of forecasting techniques. While models such as FARIMA, ARIMA and Holt-Winters have been used as traffic predictors in bandwidth allocation schemes, we attempt to improve the accuracy of video traffic predictions by using FARIMA/GARCH, hybrid FARIMA or FARIMA/GARCH with neural networks, a model selection strategy based on a non-linearity test, and a forecasting strategy which combines the forecasts produced by a FARIMA, a FARIMA/GARCH and a neural network. The traffic forecasts are used to allocate bandwidth following three different dynamic schemes. The performance of the different forecasting approaches is then tested on eight traces, aggregated on different timescales (frames, GoPs or seconds); and their comparison pertains their predictive capacity but mainly their cost effectiveness when contributing to dynamic bandwidth allocation approaches. Lastly, using the best forecasting approach, which on the average appears to be the hybrid FARIMA/GARCH-MLP model it is possible to evaluate the allocation schemes based on buffering and utilization rate, average and maximum queue length and total number of changes of allocated bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beran, J., Sherman, R., Taqqu, M.S., Willinger, W.: Long-range dependence in variable-bit-rate video traffic. IEEE Trans. Commun. 43(234), 1566–1579 (1995)

    Article  Google Scholar 

  2. Won, Y., Ahn, S.: GOP ARIMA: modeling the nonstationarity of VBR processes. Multimedia Syst. 10(5), 359–378 (2005)

    Article  Google Scholar 

  3. Granger, C., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1, 15–29 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hosking, J.R.: Fractional differencing. Biometrika 68(1), 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jin, Z., Shu, Y., Liu, J., Oliver, W.: Prediction-based bandwidth allocation for VBR traffic. Trans. Tianjin Univ. 2(4), 221–225 (2001)

    Google Scholar 

  6. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221–238 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhou, B., He, D., Sun, Z., Ng, W. H.: Network traffic modeling and prediction with ARIMA/GARCH. In: Proceedings of HET-NETs Conference, pp. 1–10 (2005)

  8. Markovich, N.M., Krieger, U.R.: Statistical analysis and modeling of Skype VoIP flows. Comput. Commun. 33, S11–S21 (2010)

    Article  Google Scholar 

  9. Balkin, S.D., Ord, J.K.: Automatic neural network modeling for univariate time series. Int. J. Forecast. 16(4), 509–515 (2000)

    Article  Google Scholar 

  10. Frank, R.J., Davey, N., Hunt, S.P.: Time series prediction and neural networks. J. Intell. Robot. Syst. 31(1–3), 91–103 (2001)

    Article  MATH  Google Scholar 

  11. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale internet traffic forecasting using neural networks and time series methods. Expert Syst. 29(2), 143–155 (2012)

    Google Scholar 

  12. Krithikaivasan, B., Zeng, Y., Deka, K., Medhi, D.: ARCH-based traffic forecasting and dynamic bandwidth provisioning for periodically measured nonstationary traffic. IEEE/ACM Trans Netw (TON) 15(3), 683–696 (2007)

    Article  Google Scholar 

  13. Sadek, N., Khotanzad, A., Chen, T.: ATM dynamic bandwidth allocation using F-ARIMA prediction model. In: Proceedings of the 12th International Conference on Computer Communications and Networks (ICCCN 2003), pp. 359–363. IEEE (2003)

  14. Chowdhury, M.Z., Yeong, M.J.: Quality-aware popularity based bandwidth allocation for scalable video broadcast over wireless access networks. J. Intern. Technol. 16(6), 1089–1098 (2015)

    Google Scholar 

  15. Crovella, M., Krishnamurthy, B.: Internet Measurement: Infrastructure, Traffic and Applications. Wiley, New York (2006)

    Google Scholar 

  16. Lee, T.H., White, H., Granger, C.W.: Testing for neglected nonlinearity in time series models: a comparison of neural network methods and alternative tests. J. Econom. 56(3), 269–290 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katris, C., Daskalaki, S.: Combining time series forecasting methods for internet traffic. In Stochastic Models, Statistics and their Applications, pp. 309–317. Springer International Publishing (2015)

  18. Sowell, F.: Maximum likelihood estimation of stationary univariate fractionally integrated time series models. J. Econom. 53(1), 165–188 (1992)

    Article  MathSciNet  Google Scholar 

  19. Ghalanos, A.: rugarch: Univariate GARCH models. R package version, pp. 1–3 (2014)

  20. Baillie, R.T., Chung, C.F., Tieslau, M.A.: Analysing inflation by the fractionally integrated ARFIMA–GARCH model. J. Appl. Econom. 11(1), 23–40 (1996)

    Article  Google Scholar 

  21. Kim, S.: Forecasting internet traffic by using seasonal GARCH models. J. Commun. Netw. 13(6), 621–624 (2011)

    Article  Google Scholar 

  22. Syed, A.R., Saleem, H., Syed, H.: MCMC simulation of GARCH model to forecast network traffic load. Int. J. Comput. Sci. Issues 9(3/2), 277–284 (2012)

    Google Scholar 

  23. Engle, R.F., Bollerslev, T.: Modelling the persistence of conditional variances. Econom. Rev. 5(1), 1–50 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)

    Article  Google Scholar 

  25. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Internet traffic forecasting using neural networks. In: International Joint Conference on Neural Networks (IJCNN’06), pp. 2635–2642. IEEE (2006)

  26. Haykin, S.: Neural Networks, a Comprehensive Foundation. Prentice Hall, Englewood Cliffs (2001)

    MATH  Google Scholar 

  27. Abarbanel, H.D., Kennel, M.B.: Local false nearest neighbors and dynamical dimensions from observed chaotic data. Phys. Rev. E 47(5), 3057 (1993)

    Article  Google Scholar 

  28. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis, vol. 7. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  29. Katris, C., Daskalaki, S.: Comparing forecasting approaches for internet traffic. Expert Syst. Appl. 42(21), 8172–8183 (2015)

    Article  MATH  Google Scholar 

  30. Fitzek, F.H.P., Reisslein, M.: MPEG-4 and H.263 video traces for network performance evaluation. IEEE Netw. 15(6), 40–54 (2001)

    Article  Google Scholar 

  31. Seeling, P., Reisslein, M., Kulapala, B.: Network performance evaluation using frame size and quality traces of single-layer and two-layer video: a tutorial. IEEE Commun. Surv. Tutor. 6(3), 58–78 (2004)

    Article  Google Scholar 

  32. Van der Auwera, G., David, P.T., Reisslein, M.: Traffic and quality characterization of single-layer video streams encoded with the H. 264/MPEG-4 advanced video coding standard and scalable video coding extension. IEEE Trans. Broadcast. 54(3), 698–718 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Katris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katris, C., Daskalaki, S. Dynamic Bandwidth Allocation for Video Traffic Using FARIMA-Based Forecasting Models. J Netw Syst Manage 27, 39–65 (2019). https://doi.org/10.1007/s10922-018-9456-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-018-9456-1

Keywords

Navigation