Journal of Network and Systems Management

, Volume 24, Issue 3, pp 578–606 | Cite as

A Virtual Id Routing Protocol for Future Dynamics Networks and Its Implementation Using the SDN Paradigm

  • Braulio Dumba
  • Hesham Mekky
  • Sourabh Jain
  • Guobao Sun
  • Zhi-Li Zhang


In this paper, we propose Virtual Id Routing (VIRO) a novel “plug-&-play” non-IP routing protocol for future dynamics networks. VIRO decouples routing/forwarding from addressing by introducing a topology-aware, structured virtual id layer to encode the locations of switches and devices in the physical topology. It completely eliminates network-wide flooding in both the data and control planes, and thus is highly scalable and robust. VIRO effectively localizes the effect of failures, performs fast re-routing and supports multiple (logical) topologies on top of the same physical network substrate to further enhance network robustness. We have implemented an initial prototype of VIRO using Open vSwitch, and we extend it (both within the user space and the kernel space) to implement VIRO switching functions in VIRO switches. In addition, we use the POX SDN controller to implement VIRO’s control and management plane functions. We evaluate our prototype implementation through emulation and in the GENI (the Global Environment for Network Innovations) testbed using many synthetic and real topologies. Our evaluation results show that VIRO has better scalability than link-state based protocols (e.g. OSPF and SEATTLE) in terms of routing-table size and control overhead, as well as better mechanisms for failure recovery.


VIRO Open vSwitch Software Defined Networks GENI 



This research was supported in part by a Raytheon/NSF subcontract 9500012169/CNS-1346688, DTRA grants HDTRA1-09-1-0050 and HDTRA1-14-1-0040, DoD ARO MURI Award W911NF-12-1-0385, and NSF grants CNS-1117536, CRI-1305237 and CNS-1411636.


  1. 1.
    Jain, S., Chen, Y., Zhang Z.: VIRO: A scalable, robust and namespace independent virtual id routing for future networks. In: Proceedings of the IEEE INFOCOM, (2011). doi: 10.1109/INFCOM.2011.5935058
  2. 2.
    Kim, C., Caesar, M., Rexford, J.: Floodless in Seattle: a scalable ethernet architecture for large enterprises. In: Proceedings of the ACM SIGCOMM, (2008). doi: 10.1145/1402958.1402961
  3. 3.
    Caesar, M., Condie, T., Kannan, J., Lakshminarayanan, K., Stoica, I.: ROFL: routing on flat labels. In: Proceedings of the ACM SIGCOMM, (2006). doi: 10.1145/1151659.1159955
  4. 4.
    Ford, B.: Unmanaged internet protocol: taming the edge network management crisis. In: Proceedings of the ACM SIGCOMM, (2004). doi: 10.1145/972374.972391
  5. 5.
    Myers, A., Ng, E., Zhang, H.: Rethinking the service model: scaling Ethernet to a million nodes. In: Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), ACM (2004)Google Scholar
  6. 6.
    Sharma, S., Gopalan, K., Nanda, S., Chiueh, T.C: Viking: a multi-spanning-tree Ethernet architecture for metropolitan area and cluster networks. In: Proceedings of the IEEE INFOCOM, (2004). doi: 10.1109/INFCOM.2004.1354651
  7. 7.
    Rodeheffer, T.L., Thekkath, C.A., Anderson, D.C.: Smartbridge: a scalable bridge architecture. In: Proceedings of the ACM SIGCOMM, (2000). doi: 10.1145/347059.347546
  8. 8.
    Kim, C., Rexford J.: Revisiting Ethernet: plug-and-play made scalable and efficient. In: Proceedings of the 15th IEEE Workshop on Local and Metropolitan Area Networks, (2007). doi: 10.1109/LANMAN.2007.4295993
  9. 9.
    Ray, S., Guerin, R., Sofia, R.: A distributed hash table based address resolution scheme for large-scale ethernet networks. In: Proceedings of the IEEE International Conference on Communications (ICC), IEEE (2007). doi: 10.1109/ICC.2007.1066
  10. 10.
    Alaettinoglu, C., Shankar, A: Viewserver hierarchy: a new inter-domain routing protocol and its evaluation. In: Proceedings of the IEEE INFOCOM, (1993). doi: 10.1109/INFCOM.1994.337589
  11. 11.
    GENI: Exploring networks of the future.
  12. 12.
    Maymounkov, P., Mazieres, D.: Kademlia: a peer-to-peer information system based on the XOR metric. In: Proceedings of the IPTPS, (2002)Google Scholar
  13. 13.
    Caesar, M., Castro, M., Nightingale, E. B., O’Shea, G., Rowstron, A.: Virtual ring routing: network routing inspired by DHTs. In: Proceedings of the ACM SIGCOMM, (2006). doi: 10.1145/1159913.1159954
  14. 14.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proceedings of the ACM 9th Annual International Conference on Mobile Computing and Networking (MobiCom), ACM (2003). doi: 10.1145/938985.938996
  15. 15.
    Ee, C., Ratnasamy, S., Shenker, S.: Practical data-centric storage. In: Proceedings of the 3rd Conference on Networked Systems Design and Implementation (NSDI), vol. 3, pp. 24–24, ACM (2006)Google Scholar
  16. 16.
    Jain, S., Chen, Y., Zhang Z.: VIRO: A plug & play, scalable, robust and namespace independent virtual id routing for future networks. In: Tech report.
  17. 17.
    Lu, G.H., Jain, S., Chen, S., Zhang, Z.: Virtual id routing: a scalable routing framework with support for mobility and routing efficiency. In: Proceedings of the 3rd International Workshop on Mobility in the Evolving Internet Architecture (MobiArch), ACM (2008). doi: 10.1145/1403007.1403025
  18. 18.
    Yu, Y., Lu, G., Zhang, Z.: Enhancing location service scalability with HIGH-GRADE. In: Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems, (2004). doi: 10.1109/MAHSS.2004.1392102
  19. 19.
    Dumba, B., Mekky, H., Sun, G., Zhang, Z.: Experience in implementing and deploying a non-IP routing protocol VIRO in GENI. In: Proceeding of the IEEE International Workshop on Computer and Networking Experimental Research Using Testbeds, IEEE (2014). doi: 10.1109/ICNP.2014.85
  20. 20.
  21. 21.
    Pettit, J.: A Whirlwind Tour (2011)Google Scholar
  22. 22.
    Pettit, J.: OVS Deep Dive, OpenStack Summit (2013)Google Scholar
  23. 23.
    Mekky, H., Hao, F., Mukherjee, S., Zhang, Z., Lakshman, T.: Application-aware Data Plane. In: Proceedings of the ACM SIGCOMM Workshop on Hot topics on Software Defined Networks (HotSDN), ACM (2014). doi: 10.1145/2620728.2620735
  24. 24.
    Mekky, H., Jin, C., Zhang, Z.: VIRO-GENI: SDN-based approach for a non-IP protocol in GENI. In: Proceedings of the Third GENI Research and Educational Experiment Workshop (GREE), IEEE (2014). doi: 10.1109/GREE.2014.14
  25. 25.
    Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies with rocketfuel. In: Proceedings of the IEEE/ACM Transactions on Networking, IEEE (2004). doi: 10.1109/TNET.2003.822655
  26. 26.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: Proceedings of the ACM SIGCOMM, (2008). doi: 10.1145/1402946.1402967
  27. 27.
    Medina, A., Matta, I., Byers, J.: BRITE: a flexible generator of Internet topologies. Technical Report, ACM (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Braulio Dumba
    • 1
  • Hesham Mekky
    • 1
  • Sourabh Jain
    • 2
  • Guobao Sun
    • 1
  • Zhi-Li Zhang
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.GoogleMountain ViewUSA

Personalised recommendations