Journal of Network and Systems Management

, Volume 22, Issue 4, pp 682–708 | Cite as

A Hybrid End-to-End QoS Path Computation Algorithm for PCE-Based Multi-Domain Networks

  • Ahmed Frikha
  • Samer Lahoud
  • Bernard Cousin


Inter-domain quality of service (QoS) routing is a challenging problem for today’s Internet. This problem requires the computation of paths that cross multiple domains and meet different QoS constraints. In addition, the used computation methods must meet the constraints of confidentiality and autonomy imposed by the domains of different operators. Path computation element (PCE)-based architecture offers a promising solution for inter-domain QoS routing. It ensures the computation of end-to-end QoS paths while preserving the confidentiality and the autonomy of the domains. In this paper, we propose a novel hybrid end-to-end QoS path computation algorithm, named HID-MCP, for PCE-based networks. HID-MCP is a hybrid algorithm that combines the advantages of pre-computation and on-demand computation to obtain end-to-end QoS paths. Moreover, it integrates a crankback mechanism for improving path computation results in a single domain or in multiple domains based on the PCE architecture. Detailed analyses are provided to assess the performance of our algorithm in terms of success rate and computational complexity. The simulation results show that our algorithm has an acceptance rate of the requests very close to the optimal solution; precisely, the difference is lower than 1 % in a realistic network. Moreover, HID-MCP has a low computational complexity. Besides, our solution relies on the PCE architecture to overcome the limitations related to inter-domain routing such as domain autonomy and confidentiality.


Inter-domain QoS routing Path computation element (PCE) Crankback mechanism Pre-computation On-demand computation Look-ahead information 


  1. 1.
    Yannuzzi, M., Masip-Bruin, X., Sanchez, S., Domingo-Pascual, J., Orda, A., Sprintson, A.: On the challenges of establishing disjoint QoS IP/MPLS paths across multiple domains. IEEE Commun. Mag. 44(12), 60–66 (2006)CrossRefGoogle Scholar
  2. 2.
    Uludag, S., Lui, K., Nahrstedt, K., Brewster, G.: Analysis of topology aggregation techniques for QoS routing. ACM Comput. Surv (CSUR), 39(3), paper 7 (2007)Google Scholar
  3. 3.
    Farrel, A., Vasseur, J.P., Ash, J.A.: Path Computation element (PCE)-based architecture. In: IETF RFC 4655 (2006)Google Scholar
  4. 4.
    Vasseur, J.P., Le Roux, J.: Path computation element (PCE) communication protocol (PCEP). In: IETF RFC 5440 (2009)Google Scholar
  5. 5.
    Torab, P., Jabbari, B., Xu, Q., Gong, S., Yang, X., Lehman, T., Tracy, C., Sobieski, J.: On cooperative inter-domain path computation. In: The Eleventh IEEE Symposium on Computers and Communications (IEEE ISCC), Sardinia, Italy (2006)Google Scholar
  6. 6.
    Vasseur, J.P., Zhang, R., Bitar, N., Le Roux, J.: A backward-recursive PCE-based computation (BRPC) Procedure to compute shortest constrained inter-domain traffic engineering label switched paths. In: IETF RFC 5441 (2009)Google Scholar
  7. 7.
    Geleji, G., Perros, H., Xin, Y., Beyenne, T.: A performance analysis of inter-domain QoS routing schemes based on path computation elements. In: High-Capacity Optical Networks and Enabling Technologies (HONET), pp. 146–152 (2008)Google Scholar
  8. 8.
    Orda, A., Sprintson, A.: QoS routing: the precomputation perspective. IEEE Int. Conf. Comput. Commun. 1, 128–136 (2000)Google Scholar
  9. 9.
    Orda, A., Sprintson, A.: Precomputation schemes for QoS routing. IEEE/ACM Trans. Netw. 11(4), 578–591 (2003)CrossRefGoogle Scholar
  10. 10.
    Ma, Z., Zhang, P., Kantola, R.: Influence of link state updating on the performance and cost of QoS routing in an intranet. In: IEEE Workshop on High Performance Switching and Routing (IEEE HPSR). Dallas, TX, USA (2001)Google Scholar
  11. 11.
    Frikha, A., Lahoud, S., Cousin, B.: Hybrid inter-domain QoS routing with crankback mechanisms. In: The 11th International Conference on Next Generation Wired/Wireless Advanced Networking (NEW2AN), Lecture Notes in Computer Science, vol. 6869, pp. 450–462, St. Petersburg, Russia (2011)Google Scholar
  12. 12.
    Zheng, W., Crowcroft, J.: Quality-of-service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. 14(7), 1228–1234 (1996)CrossRefGoogle Scholar
  13. 13.
    Knoll, T.: BGP extended community for QoS marking. In: draft-knoll-idr-qos-attribute-11, Work in Progress, IETF (2013)Google Scholar
  14. 14.
    Griffin, D., Spencer, J., Griem, J., Boucadair, M., Morand, P., Howarth, M., Wang, N., Pavlou, G., Asgari, A., Georgatsos, P.: Inter-domain routing through QoS-class planes. IEEE Commun. Mag. 45(2), 88–95 (2007)CrossRefGoogle Scholar
  15. 15.
    Bertrand, G., Lahoud, S., Texier, G., Molnar, M.: A distributed exact solution to compute inter-domain multi-constrained paths. Int. Futur. Lect. Notes Comput. Sci. 5733, 21–30 (2009)CrossRefGoogle Scholar
  16. 16.
    Mieghem, P.V., Kuipers, F.A.: Concepts of exact QoS routing algorithms. IEEE/ACM Trans. Netw. 12(5), 851–864 (2004)CrossRefGoogle Scholar
  17. 17.
    Frikha, A., Lahoud, S.: Pre-computation based Heuristic for Inter-Domain QoS routing. In: The Fourth IEEE International Conference on Advanced Networks and Telecommunication Systems (IEEE ANTS), pp. 61–63. Mumbai, India (2010)Google Scholar
  18. 18.
    Frikha, A., Lahoud, S.: Performance evaluation of pre-computation algorithms for inter-domain QoS routing. In: The 18th International Conference on Telecommunications (ICT), pp. 327–332. Ayia Napa, Cyprus (2011)Google Scholar
  19. 19.
    Esmaeili, M., Xu, F., Peng, M., Ghani, N., Gumaste, A., Finochietto, J.: Enhanced crankback signaling for multi-domain IP/MPLS networks. J. Comput. Commun. 33(18), 2215–2223 (2010)CrossRefGoogle Scholar
  20. 20.
    Molnar, M.: Hierarchies for constrained partial spanning problems in graphs. In: IRISA Technical Report 1900 (2008)Google Scholar
  21. 21.
    Mieghem, P.V., De Neve, H., Kuipers, F.A.: Hop-by-hop quality of service routing. J. Comput. Netw. 37, 407–423 (2001)CrossRefGoogle Scholar
  22. 22.
    Bradford, R., Vasseur, J.P., Farrel, A.: Preserving topology confidentiality in inter-domain path computation using a path-key-based mechanism. In: IETF RFC 5520 (2009)Google Scholar
  23. 23.
    Calvert, K.I., Doar, M.B., Zegura, E.W.: Modelling internet topology. IEEE Commun. Mag. 35(6), 160–163 (1997)CrossRefGoogle Scholar
  24. 24.
    Guichard, J., Le Faucheur, F., Vasseur, J.P.: Definitive MPLS Network Designs. Cisco Press, Indiana (2005)Google Scholar
  25. 25.
    Frikha, A., Lahoud, S.: Hybrid inter-domain QoS routing based on look-ahead information. In: IRISA Technical Report 1946 (2010).
  26. 26.
    Frikha, A., Cousin, B., Lahoud, S.: Extending node protection concept of P-cycles for an efficient resource utilization in multicast traffic. In: The 36th IEEE Conference on Local Computer Networks (IEEE LCN), pp. 175–178, Bonn, Germany (2011)Google Scholar
  27. 27.
    Frikha, A., Lahoud, S., Cousin, B.: Candidate-cycle-based Heuristic algorithm for node-and-link protection of dynamic multicast traffic in optical DWDM networks. In: The 26th International Conference on Information Networking (ICOIN), pp. 47–52, Bali, Indonesia (2012)Google Scholar
  28. 28.
    Frikha, A., Lahoud, S., Cousin, B., Molnar, M.: Reliable multicast sessions provisioning in sparse light-splitting DWDM networks using P-cycles. In: The 2012 Annual IEEE Communications Quality and Reliability International Workshop (IEEE CQR), San Diego, USA (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.University of Rennes 1, IRISARennes CedexFrance

Personalised recommendations