Skip to main content
Log in

Automated Defect Recognition on X-ray Radiographs of Solid Propellant Using Deep Learning Based on Convolutional Neural Networks

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

For defense applications, rapid X-ray inspection of propellant samples is essential for the identification and assessment of defects. Automation of this process using artificial intelligence is possible by properly training a neural network model. Convolution Neural Networks (CNNs) have recently demonstrated excellent success in both the tasks of image recognition and localisation using an adequate amount of data. In real-world, it’s not an easy task to produce the correct amount of experimental data required for the deep neural network to operate. In this work, we propose a method for producing synthetic radiographic data that is supported by ray tracing based radiographic simulations for the deep learning algorithms to automatically detect anomaly in X-ray images. The simulation results, which are then supplemented by noise extracted from the experimental data, show a good comparison with the measurements. This Simulation assisted Automatic Defect Recognition (Sim-ADR) system simultaneously perform defect detection and defect instance segmentation. The accuracy of the defect detection system is more than 87% on a testing set included 416 images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Brooks, W.: Solid propellant grain design and internal ballistics, vol 8076. National Aeronautics and Space Administration (1972)

  2. Davenas, A.: Solid Rocket Propulsion Technology. Newnes, Oxford (2012)

    Google Scholar 

  3. Halmshaw, R.: Industrial Radiology: Theory and Practice, vol. 21. Chapman Hall, London (2012)

    Google Scholar 

  4. Ghose, B., Kankane, D.: Estimation of location of defects in propellant grain by X-ray radiography. NDT E Int. 41(2), 125–128 (2008)

    Article  Google Scholar 

  5. Deprins, E.: Digital radiography in ndt applications. CINDE J. 25(4), 14–16 (2004)

    Google Scholar 

  6. Ravindran, V.: Digital radiography using flat panel detector for the non-destructive evaluation of space vehicle components. Journal of Non-Destructive Testing & Evaluation 4(2), (2005)

  7. Willems, P., et al.: Image quality comparison for digital radiography systems for ndt. In: 15th WCNDT (2000)

  8. Godoi, W., da Silva, R., Swinka-Filho, V.: Pattern recognition in the automatic inspection of flaws in polymeric insulators. Insight Non-Destruct. Test. Cond. Monitor. 47(10), 608–614 (2005)

  9. Liao, T.W., Li, Y.: An automated radiographic ndt system for weld inspection: part iiflaw detection. Ndt E Int. 31(3), 183–192 (1998)

    Article  Google Scholar 

  10. Wang, G., Liao, T.W.: Automatic identification of different types of welding defects in radiographic images. Ndt E Int. 35(8), 519–528 (2002)

    Article  Google Scholar 

  11. Da Silva, R.R., Siqueira, M.H., de Souza, M.P.V., Rebello, J.M., Calôba, L.P.: Estimated accuracy of classification of defects detected in welded joints by radiographic tests. NDT E Int. 38(5), 335–343 (2005)

    Article  Google Scholar 

  12. Saravanan, T., Bagavathiappan, S., Philip, J., Jayakumar, T., Raj, B.: Segmentation of defects from radiography images by the histogram concavity threshold method. Insight Non-Destruct. Test. Cond. Monitor. 49(10), 578–584 (2007)

    Article  Google Scholar 

  13. Da Silva, R.R., Mery, D.: Radiographic testing: part l image processing. Mater. Eval. 643, 1–9 (2007)

    Google Scholar 

  14. Zahran, O., Kasban, H., El-Kordy, M., Abd El-Samie, F.: Automatic weld defect identification from radiographic images. Ndt E Int. 57, 26–35 (2013)

    Article  Google Scholar 

  15. Lashkia, V.: Automatic weld defect identification from radiographic images. Image Vis. Comput. 19(5), 261–269 (2001)

    Article  Google Scholar 

  16. Da Silva, R., Siqueira, M.H., Caloba, L.P., Rebello, J.: Radiographics pattern recognition of welding defects using linear classifiers. Insight 43(10), 669–74 (2001)

    Google Scholar 

  17. Da Silva, R., Calôba, L., Siqueira, M., Sagrilo, L., Rebello, J.: Evaluation of the relevant characteristic parameters of welding defects and probability of correct classification using linear classifiers. Insight 44(10), 616–22 (2002)

    Google Scholar 

  18. Liao, T.W.: Improving the accuracy of computer-aided radiographic weld inspection by feature selection. Ndt E Int. 42(4), 229–239 (2009)

    Article  Google Scholar 

  19. Valavanis, I., Kosmopoulos, D.: Multiclass defect detection and classification in weld radiographic images using geometric and texture features. Expert Syst. Appl. 37(12), 7606–7614 (2010)

    Article  Google Scholar 

  20. Zapata, J., Vilar, R., Ruiz, R.: Performance evaluation of an automatic inspection system of weld defects in radiographic images based on neuro-classifiers. Expert Syst. Appl. 38(7), 8812–8824 (2011)

    Article  Google Scholar 

  21. Boaretto, N., Centeno, T.M.: Automated detection of welding defects in pipelines from radiographic images dwdi. Ndt E Int. 86, 7–13 (2017)

    Article  Google Scholar 

  22. Baniukiewicz, P.: Automated defect recognition and identification in digital radiography. J. Nondestruct. Eval. 33(3), 327–334 (2014)

    Article  Google Scholar 

  23. Zapata, J., Vilar, R., Ruiz, R.: Automatic inspection system of welding radiographic images based on ann under a regularisation process. J. Nondestruct. Eval. 31(1), 34–45 (2012)

    Article  Google Scholar 

  24. Ferguson, M.K., Ronay, A., Lee, Y.T.T., Law, K.H.: Detection and segmentation of manufacturing defects with convolutional neural networks and transfer learning. Smart Sustain. Manuf. Syst. 2, 10 (2018)

    Article  Google Scholar 

  25. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco, M.: Gdxray: The database of X-ray images for nondestructive testing. J. Nondestruct. Eval. 34(4), 42 (2015)

    Article  Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

  27. Duvauchelle, P., Freud, N., Kaftandjian, V., Babot, D.: A computer code to simulate x-ray imaging techniques. Nucl. Instrum. Methods Phys. Res. Sect. B 170(1–2), 245–258 (2000)

    Article  Google Scholar 

  28. Lazos, D., Bliznakova, K., Kolitsi, Z., Pallikarakis, N.: An integrated research tool for X-ray imaging simulation. Comput. Methods Progr. Biomed. 70(3), 241–251 (2003)

    Article  Google Scholar 

  29. Fanti, V., Marzeddu, R., Massazza, G., Randaccio, P.: A simulation tool to support teaching and learning the operation of X-ray imaging systems. Med. Eng. Phys. 27(7), 555–559 (2005)

    Article  Google Scholar 

  30. Bellon, C., Jaenisch, G.R.: Artist-analytical rt inspection simulation tool. In: Proc DIR, pp. 25–27 (2007)

  31. Tucker, D., Barnes, G., Chakraborty, D.: Semiempirical model for generating tungsten target X-ray spectra. Med. Phys. 18, 211–8 (1991a). https://doi.org/10.1118/1.596709

    Article  Google Scholar 

  32. Tucker, D.M., Barnes, G.T., Wu, X.: Molybdenum target X-ray spectra: a semiempirical model. Med. Phys. 18(3), 402–407 (1991b). https://doi.org/10.1118/1.596686

    Article  Google Scholar 

  33. He, K., Gkioxari, G., Dollr, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  35. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 740–755. Springer, Cham (2014)

  36. Abdulla, W.: Mask r-cnn for object detection and instance segmentation on keras and tensorflow (2017). https://github.com/matterport/Mask_RCNN

  37. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era (2017)

  38. Joulin, A., van der Maaten, L., Jabri, A., Vasilache, N.: Learning visual features from large weakly supervised data (2015)

Download references

Acknowledgements

This study was funded by Armaments Research Board (ARMREB) and supported by High Energy Material Research Laboratory (HEMRL). We would like to thank Anirudha Sane and Deepak Patil from HEMRL, Pune for helping us in procuring the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruv Gamdha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This document is the results of the research project funded by Armaments Research Board (ARMREB) in collaboration with the High Energy Material Research Laboratory (HEMRL).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamdha, D., Unnikrishnakurup, S., Rose, K.J.J. et al. Automated Defect Recognition on X-ray Radiographs of Solid Propellant Using Deep Learning Based on Convolutional Neural Networks. J Nondestruct Eval 40, 18 (2021). https://doi.org/10.1007/s10921-021-00750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00750-4

Keywords

Navigation