Real-Time Parametric Evaluation of Weld in Metallic Wires: A 3-D Simulation and Experimental Validation


This paper is focused on the real-time characterization of weld in high speed high-end drawn metallic wires using encircling coil eddy current sensor. Emphasis was laid on the evaluation of weld-length and its span of stability with a special reference to signal pattern recognition through the improvised non-linear regression tool. A 3-D CIVA simulation electromagnetic testing module was implemented to evaluate the theoretical expected response of the system. The qualitative and quantitative analysis of welds was studied using signal processing of EC data. The percentage deviations in weld-span between simulated and experimental results were found to be around 1.6% and 12.5% at welding location of 1st and 8th pass respectively. This demonstrates the non- uniformity of the weld on relatively smaller diameter wire (8th pass) as compared to the larger diameter wire (1st pass). A good agreement was observed between the theoretical and experimental results. From the applications perspective, these findings indicate the importance on achieving higher efficiency combined with reliable quality control. On-line implementation of the proposed method satisfies both the requirements; detection accuracy and detection speed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Ditchburn, R.J., Burke, S.K., Scala, C.M.: NDT of welds: state of the art. NDT E Int. 29, 111–117 (1996).

    Article  Google Scholar 

  2. 2.

    Shao, J., Yan, Y.: Review of techniques for on-line monitoring and inspection of laser welding. J. Phys. Conf. Ser. 15, 101–107 (2005).

    Article  Google Scholar 

  3. 3.

    Khalifa, M., Khan, F., Haddara, M.: Optimal selection of non-destructive inspection technique for welded components. Insight Non-Destr. Test Cond. Monit. 51, 192–200 (2009).

    Article  Google Scholar 

  4. 4.

    Halmshaw, R.: Introduction to the non-destructive testing of welded joints, 2nd edn, Abington Publishing, Nashville (1996)

    Google Scholar 

  5. 5.

    Garcí, J.: Non-destructive techniques based on eddy current TESTING. Sensors (2011).

    Article  Google Scholar 

  6. 6.

    Hashizume, H., Yamada, Y., Miya, K., Toda, S., Morimoto, K., Araki, Y., Satake, K., Shimizu, N.: Numerical and experimental analysis of eddy current testing for a tube with cracks. IEEE Trans. Magn. 28, 1469–1472 (1992)

    Article  Google Scholar 

  7. 7.

    Bae, J., Kim, S.Y.: Hot wire inspection using eddy current. IEEE Instrum Meas Technol Conf (IMTC 2001), Budapest, Hungary, pp. 962–965

  8. 8.

    DEFECTOMAT Sensor System Thermal Coil. In: Inst. Dr. Foerster. Accessed 8 Mar 2020

  9. 9.

    Mercier, D.Ã., Lesage, J., Decoopman, X., Chicot, D.: Eddy currents and hardness testing for evaluation of steel decarburizing. NDT E Int 39, 652–660 (2006).

    Article  Google Scholar 

  10. 10.

    Pedersen, L.B., Magnusson, K., Zhengsheng, Y.: Eddy current testing of thin layers using co-planar coils. J. Res. Nondestruct. Eval. 12, 53–64 (2000)

    Article  Google Scholar 

  11. 11.

    Libby, H.L.: Introduction to electromagnetic non-destructive test method, 1st edn. Library of Congress, Wiley-Interscience, New York (1971)

    Google Scholar 

  12. 12.

    McMaster, R.C., Mester, M., McIntire, P.: Electromagnetic testing. Non-destructive testing handbook, vol. IV. ASNT, Columbus (1992)

    Google Scholar 

  13. 13.

    Sophian, A., Tian, G.Y., Taylor, D., Rudlin, J.: Electromagnetic and eddy current NDT in weld inspection: a review. Insight Non-Destruct. Test Cond. Monit. 43, 302–306 (2001).

    Article  Google Scholar 

  14. 14.

    Auld, B.A., Moulder, J.C.: Review of advances in quantitative eddy current non-destructive evaluation. J. Nondestruct. Eval. 18, 3–36 (1999)

    Article  Google Scholar 

  15. 15.

    Bowker, K.J., Warnes, M.C., Ashworth, M.D.: Some developments in eddy current techniques for in-service inspection. Insight Non-Destruct. Test Cond. Monit. 37, 163–168 (1995)

    Google Scholar 

  16. 16.

    Palanisamy, R.: Developments in eddy current non-destructive testing. Mater. Eval. 49, 1158–1159 (1991)

    Google Scholar 

  17. 17.

    Shakoor, A., Zhenggan, Z.: Investigation of 3D anisotropic electrical conductivity in TIG welded 5A06 Al alloy using eddy currents. J. Mater. Process Technol. 211, 1736–1741 (2011).

    Article  Google Scholar 

  18. 18.

    Zergoug, M., Lebaili, S., Boudjellal, H., Benchaala, A.: Relation between mechanical microhardness and impedance variations in eddy current testing. NDT E Int. 37, 65–72 (2004).

    Article  Google Scholar 

  19. 19.

    Fan, M., Wang, Q., Cao, B., et al.: Frequency optimization for enhancement of surface defect classification using the eddy current technique. Sensors (Switzerland) 16, 1–16 (2016).

    Article  Google Scholar 

  20. 20.

    Li, M., Lowther, D., Guimarães, F.: Robust and accurate crack reconstruction for eddy current non destructive testing. Int. J. Appl. Electromagn. Mech. 45, 425–430 (2014).

    Article  Google Scholar 

  21. 21.

    Zaoui, A., Menana, H., Feliachi, M., Abdellah, M.: Generalization of the ideal crack model for an arrayed eddy current sensor. IEEE Trans. Magn. 44, 1638–1641 (2008).

    Article  Google Scholar 

  22. 22.

    Roach, S.D.: Designing and building an eddy current position sensor. Sensors-J. Appl. Sens. Technol. 15, 56–74 (1998)

    Google Scholar 

  23. 23.

    Wang, H., Feng, Z.: Ultra-stable and highly sensitive eddy current displacement sensor using self-temperature compensation. Sens. Actuator. A Phys. 203, 362–368 (2013).

    Article  Google Scholar 

  24. 24.

    Nabavi, M.R., Nihtianov, S.: A novel interface for eddy current displacement sensors. IEEE Trans. Instrum. Meas. 58, 1623–1632 (2009).

    Article  Google Scholar 

  25. 25.

    Rao, B.P.C., Raj, B., Jayakumar, T., Kalyanasundaram, P.: An artificial neural network for eddy current testing of austenitic stainless steel welds. NDT E Int. 35, 393–398 (2002).

    Article  Google Scholar 

  26. 26.

    Vasudevan, M., Rao, B.P.C., Venkatraman, B., et al.: Artificial neural network modelling for evaluating austenitic stainless steel and Zircaloy-2 welds. J. Mater. Process Technol. 169, 396–400 (2005).

    Article  Google Scholar 

  27. 27.

    Sasi, B., Sharma, G.K., Kumar, A., et al.: Nondestructive evaluation of austenitic stainless steel welds. Adv. Mater. Res. 794, 366–374 (2013).

    Article  Google Scholar 

  28. 28.

    Prémel, D., Pichenot, G., Sollier, T.: Development of a 3D electromagnetic model for eddy current tubing inspection: application to the simulation of probe eccentricity. Int. J. Appl. Electromagn Mech 19, 521–525 (2018).

    Article  Google Scholar 

  29. 29.

    Monebhurrun, V., Duchene, B., Lesselier, D.: Eddy current characterization of 3D bounded defects in metal tubes using a wavefield integral formulation modeling. In: Collins, R. (ed.) Nondestructive testing of materials, pp. 195–202. IOS Press, Amsterdam (1995)

    Google Scholar 

  30. 30.

    Sabbagh, H., Sabbagh, L.: An eddy-current model for three-dimensional inversion. IEEE Trans. Magn. 22, 282–291 (1986).

    Article  Google Scholar 

  31. 31.

    Fernandez, R., Schumm, A., Tabary, J., Hugonnard, P.: Simulation studies of radiographic inspections with CIVA, in 17th WCNDT. Shanghai (2008)

  32. 32.

    Schumm, A., Bremnes, O., Chassignole, B.: Numerical simulation of radiographic inspection: fast and realistic results even for thick components, in 16th World Conference of Non-destructive Testing. Montreal (2004)

  33. 33.

    Mathy, F.,, Poidevin, C., Cattiaux, G., Sollier, T.: Radiographic testing simulation with CIVA-RX—assessment on representative nuclear components, in ECNDT. Moscow (2010)

  34. 34.

    Dong, H.: Tribological properties of titanium-based alloys. Surface engineering of light alloys, aluminium, magnesium and titanium alloys, pp. 58–80. Woodhead Publishing Limited, Cambridge (2010)

    Google Scholar 

  35. 35.

    Chen, Y.B., Miao, Y.G., Li, L.Q., Wu, L.: Joint performance of laser-TIG doubleside welded 5A06 aluminum alloy. Trans. Nonferrous Met. Soc. China 19, 26–31 (2019)

    Article  Google Scholar 

  36. 36.

    Rosado, L.S., Janeiro, F.M., Ramos, P.M., Piedade, M.: Defect characterization with eddy current testing using nonlinear-regression feature extraction and artificial neural networks. IEEE Trans. Instrum. Meas. 62, 1207–1214 (2013).

    Article  Google Scholar 

  37. 37.

    Zhou, Y.: Output-based structural damage detection by using correlation analysis together with transmissibility. Materials (2017).

    Article  Google Scholar 

Download references


The authors express sincere gratitude to Director, CSIR—National Metallurgical Laboratory, Jamshedpur for kindly giving permission to publish the work. They also acknowledge the co-operation and whole-hearted support of the team of Tarapur Wire Mill, M/s Tata Steel Ltd. during the on-site field trials.

Author information



Corresponding author

Correspondence to Sarmishtha Palit Sagar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, T.K., Dutta, C., Kumar, A. et al. Real-Time Parametric Evaluation of Weld in Metallic Wires: A 3-D Simulation and Experimental Validation. J Nondestruct Eval 39, 35 (2020).

Download citation


  • Weld inspection
  • Eddy current
  • Non-linear regression
  • Pattern recognition
  • 3-D CIVA