Skip to main content

Advertisement

Log in

Eddy Current Probe Parameters Identification Using a Genetic Algorithm and Simultaneous Perturbation Stochastic Approximation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This study tries to identify the coil parameters using numerical methods. The eddy current testing (ECT) is used for evaluation of a crack with the aid of numerical simulations by utilizing the identification of these parameters. In this study, a comparison of the performance of the GA and SPSA algorithms to identify the parameter values of the coil sensors are presented. So, the optimization probe geometry is introduced in the simulation with Three-dimensional finite element simulations (FLUX finite element code) were conducted to obtain eddy current signals resulting from a crack in a plate made of aluminium. The simulation results are compared with experimental measurements for the defect present in a plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bouchala, T., Abdelhadi, B., Benoudjit, A.: Novel coupled electric field method for defect characterization in eddy current non-destructive testing systems. J. Nondestruct. Eval. 32, 1–11 (2013)

    Article  Google Scholar 

  2. Bouchala, T., Abdelhadi, B., Benoudjit, A.: Fast analytical modeling of eddy current non-destructive testing of magnetic material. J. Nondestruct. Eval. 32, 294–299 (2013)

    Article  Google Scholar 

  3. Bowler, J.R.: Eddy-current interaction with an ideal crack. I. The forward problem. J. Appl. Phys. 75(12), 15 (1994)

    Google Scholar 

  4. Yusa, N., Hashizume, H.: Numerical investigation of the ability of eddy current testing to size surface breaking cracks. NoNdestructive testing and evaluation. Taylor & Francis, Abington (2016)

    Google Scholar 

  5. García-Martín, J., Gómez-Gil, J., Vázquez-Sánchez, E.: Non-destructive techniques based on eddy current testing. Sensors 11, 2525–2565 (2011)

    Article  Google Scholar 

  6. Qi, H., Zhao, H., Liu, W., Zhang, H.: Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm. J. Zhejiang Univ. Sci. A 10, 1205–1212 (2009)

    Article  Google Scholar 

  7. Skarlatos, A., Theodoulidis, T.: Solution to the eddy-current induction problem in a conducting half-space with a vertical cylindrical borehole. Proc. R. Soc. A 468, 1758–1777 (2012)

    Article  MathSciNet  Google Scholar 

  8. Leuca, T., Novac, M.: Optimization of eddy current heating process using genetic algorithms. Rev. Roum. Sci. Technol. Électrotechn. ET Énerg. 54(4), 355–363 (2009)

    Google Scholar 

  9. Foucher, F., Brunotte, X., Kalai, A., Le Floch Y., Pichenot, G., Prémel, D.: Simulation of eddy current testing with flux® and civa®. Journées Cofrend, Beaune, France, 24–26 mai (2005)

  10. Foucher, F., Le Floch, Y., Verite, J.-C.: Contrôle Non Destructif avec FLUX. ‘Flux Magazin N°45-Trimestriel-Cedrat-Cedrat Technologies-Magsoft Corp (Mai 2004)

  11. http://www.cedrat.com/en/software-solutions/flux.html

  12. Wheeler, H.A.: Simple inductance formulas for radio coils. Proc. Inst. Radio Eng. 16, 1398–1400 (1928)

    Google Scholar 

  13. Yating, Y., Pingan, D., Lichuan, X.: Coil impedance calculation of an eddy current sensor by the finite element method. Russ. J. Nondestr. Test. 44(4), 296–302 (2008)

    Article  Google Scholar 

  14. Grover, F.W.: A comparison of the formulas for the calculation of the inductance of coils and spirals wound with wire of large cross section. Bur. Stand. J. Res. 3, 163–190 (1929)

    Article  Google Scholar 

  15. Preda, G., Rebican, M., Hantila, F.I.: Integral formulation and genetic algorithms for defects geometry reconstruction using pulse eddy currents. IEEE Trans. Magn. 46, 3433–3436 (2010)

    Article  Google Scholar 

  16. Thollon, F., Burais, N.: Geometrical optimization of sensors for eddy currents non destructive testing and evaluation. IEEE Trans. Magn. 31, 2026–2031 (1995)

    Article  Google Scholar 

  17. Dolapchiev, I., Brandisky, K., Ivanov, P.: Eddy current testing probe optimization using a parallel genetic algorithm. Serb. J. Electr. J. Electr. Eng. 5, 39–48 (2008)

    Article  Google Scholar 

  18. Ozguven, E.E., Ozbay, K.: Performance Evaluation of Simultaneous Perturbation stochastic approximation algorithm for solving stochastic transportation network analysis problems. In: Proceedings of the 87th Annual Meeting on Transportation Research Board’s, Washington, D.C (2008)

  19. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control. 37, 332–341 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Ayad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaiba, S., Ayad, A., Ziani, D. et al. Eddy Current Probe Parameters Identification Using a Genetic Algorithm and Simultaneous Perturbation Stochastic Approximation. J Nondestruct Eval 37, 55 (2018). https://doi.org/10.1007/s10921-018-0506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0506-0

Keywords

Navigation