Eddy Current Thermography with Adaptive Carrier Algorithm for Non-destructive Testing of Debonding Defects in Thermal Barrier Coatings

  • Wenying Zhu
  • Zhanwei Liu
  • Dacheng Jiao
  • Huimin Xie


Interfacial defects can cause the premature failure of thermal barrier coatings (TBCs). An Eddy current thermography (ECT) method under the transmission mode in the heating phase is developed in this study to detect the artificial debonding defects in TBCs samples. When ECT is used, the temperature distribution of specimen surface is uneven on account of geometric heating effect, skin effect, edge effect and abnormal emissivity. Among them, the influence of the surface emissivity is the smallest, because the background noise is subtracted before the thermal images are processed. The uneven temperature distribution shields the weak thermal response characteristics of the defects and interferes with the identification of the defects. Adaptive carrier algorithms are established as post-processing algorithms to resolve this problem. The feasibility and validity of the developed methods are verified by simulation and validation tests using TBCs samples with a 2 mm artificial debonding defect and a 0.5 mm blind-hole defect.


Eddy current thermography Adaptive carrier algorithms Thermal barrier coating Debonding defect 



The authors are grateful to the financial support from the National Natural Science Foundation of China (11232008, 11372037 and 11572041).


  1. 1.
    Schulz, U., Leyens, C., Fritscher, K.: Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 7, 73–80 (2003)CrossRefGoogle Scholar
  2. 2.
    Vaben, R., Jarligo, M.O., Steinke, T.: Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205, 938–942 (2010)CrossRefGoogle Scholar
  3. 3.
    Padture, N., Gell, M., Jordan, E.: Thermal barrier coatings for gas-turbine engine applications. Science 296(5566), 280–4 (2002)CrossRefGoogle Scholar
  4. 4.
    Choi, S.R., Hutchinson, J.W., Evans, A.G.: Delamination of multilayer thermal barrier coatings. Mech. Mater. 31, 431–47 (1999)CrossRefGoogle Scholar
  5. 5.
    Blomme, E., Bulcaen, D., Declercq, F.: Air-coupled ultrasonic NDE: experiments in the frequency range 750 kHz–2 MHz. NDT&E Int. 35(7), 417–426 (2002)CrossRefGoogle Scholar
  6. 6.
    Vincent, A., Moughil, A.: Ultrasonic characterization of zirconia-based thermal barriers. NDT&E Int. 22(5), 283–291 (1989)CrossRefGoogle Scholar
  7. 7.
    Huang, H., Liu, C.: Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy. Rare Met. 30, 643–646 (2011)CrossRefGoogle Scholar
  8. 8.
    Shepard, S.M., Ahmed, T., Rubadeux, B.A.: Synthetic processing of pulsed thermographic data for inspection of turbine components. Insight 43(9), 587–589 (2001)Google Scholar
  9. 9.
    Zhao, S.B., Zhang, C.L., Wu, N.M.: Quality evaluation for air plasma spray thermal barrier coatings with pulsed thermography. Prog. Nat. Sci. 21, 301–306 (2011)CrossRefGoogle Scholar
  10. 10.
    Yang, S., Tian, G.Y., Abidin, I.Z.: Simulation of edge cracks using pulsed Eddy current stimulated. J. Dyn. Syst. Meas. Control 133, 1–6 (2011)CrossRefGoogle Scholar
  11. 11.
    Oswald-Tranta, L., Wally, G.: Thermo-inductive surface crack detection in metallic materials. In: Conference of NDT. vol. 3.8.3, pp. 1–8 (2006)Google Scholar
  12. 12.
    Noethen, M., Wolter, K.J., Meyendorf, J.: Surface crack detection in ferritic and austenitic steel components using inductive heated thermography. In: ISSE, pp. 249–254 (2010)Google Scholar
  13. 13.
    Tian, G.Y., Wilson, J., Cheng, L., et al.: Pulsed Eddy current thermography and applications. In: New Developments in Sensing Technology for Structural Health Monitoring. Springer, Berlin, pp. 205–231 (2011)Google Scholar
  14. 14.
    Ali, S., Tian, G.Y., David, T.: A feature extraction technique based on principal component analysis for pulsed Eddy current NDT. NDT&E Int. 36, 37–41 (2003)CrossRefGoogle Scholar
  15. 15.
    Ptaszek, G., Cawley, P., Almond, D.: Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating system. NDT&E Int. 45, 71–78 (2012)CrossRefGoogle Scholar
  16. 16.
    Cheng, L., Tian, G.Y.: Comparison of nondestructive testing methods on detection of delaminations in composites. J. Sens. (2012).
  17. 17.
    Cheng, L., Tian, G.Y.: Surface crack detection for carbon fiber reinforced plastic (CFRP) materials using pulsed Eddy current thermography. IEEE Sens. J. 11(12), 3261–3268 (2011)CrossRefGoogle Scholar
  18. 18.
    Pan, M.C., He, Y.Z., Tian, G.Y.: Defect characterisation using pulsed Eddy current thermography under transmission mode and NDT applications. NDT&E Int. 52, 28–36 (2012)CrossRefGoogle Scholar
  19. 19.
    Siakavellas, N.J.: The influence of the heating rate and thermal energy on crack detection by Eddy current thermography. J. Nondestruct. Eval. 35(2), 29 (2016)CrossRefGoogle Scholar
  20. 20.
    Parker, W.J., Jenkins, P.J., Butler, C.P.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961)CrossRefGoogle Scholar
  21. 21.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Osford University Press, New York (1959)zbMATHGoogle Scholar
  22. 22.
    Ptaszek, G., Cawley, P., Almond, D.: Transient thermography testing of unpainted thermal barrier coating (TBC) systems. NDT&E Int. 59, 48–56 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations