Skip to main content
Log in

Robust Estimation of Object Dimensions and External Defect Detection with a Low-Cost Sensor

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The measurement of object dimensions as well as the detection and localization of external defects are of large importance for many sectors in industry including agriculture, transportation and production. In this paper we investigate the feasibility of using commercial depth-sensing devices, based on a time-of-flight technology, such as the Kinect v2 camera, for the measurement and inspection of cuboidal objects (boxes). This paper presents a simplified system using only one Kinect sensor. At the beginning, object dimensions are roughly estimated by discovering the best-fit planes for a cloud of point based on a modified version of RANSAC (RANdom Sample Consensus). The precise geometry and morphology of the objects are then achieved by a transformation from depth to RGB representation of the points estimated as belonging to the object. RGB representation is finally processed (using scanlines on the RGB plane perpendicular to the initial edge estimate) to approximate at best the contour of the bounding box. In addition to the above, the paper proposes a method to automatically highlight defects on the objects’ surfaces: this inspection task is performed through the analysis of both the 2D object contours and the histogram of the normalized depth values. The proposed methodology takes a few seconds to deliver the results for the monitored object and, it experienced encouraging results in terms of accuracy. Indeed, the system measured the dimensions of a set of cuboidal objects with an average error of 5 mm and it was able to identify and locate defects and holes on lateral and topmost surfaces. The experimental outcomes pointed out that the system could be effectively exploited within industrial inspection applications, even more so if the low cost of the system is taken under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Sahay, R.R., Rajagopalan, A.N.: Dealing with parallax in shape-from-focus. IEEE Trans. Image Process. 20(2), 558–569 (2011)

    Article  MathSciNet  Google Scholar 

  2. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

  3. Xiao, Z., Liang, J., Yu, D., Tang, Z., Asundi, A.: An accurate stereo vision system using cross-shaped target self-calibration method based on photogrammetry. Optic. Lasers Eng. 48, 1252–1261 (2010)

    Article  Google Scholar 

  4. Fritsch, D., Khosravani, A.M., Cefalu, A., Wenzel, K.: Multi-sensors and multiray reconstruction for digital preservation. Photogramm. Woche 11, 305–323 (2011)

    Google Scholar 

  5. Kang, S. B., Webb, J. A., Zitnick, C. L., Kanade, T.: A multibaseline stereo system with active illumination and real-time image acquisition. In: Proceedings of the fifth international conference on computer vision, 1995, pp. 88–93. Cambridge, MA (1995)

  6. Pagès, J., Salvi, J.: Coded Light Techniques for 3D Reconstruction. J3eA, Journal sur l’enseignement des sciences et technologies de l’information et des systèmes (2005). doi:10.1051/bib-j3ea:2005801

  7. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE MultiMed. 19(2), 4–10 (2012)

    Article  Google Scholar 

  8. Li, L.: Time-of-Flight Camera – An Introduction. Technical White Paper, May 2014. http://www.ti.com/lit/wp/sloa190b/sloa190b.pdf (January 2015)

  9. Gonzalez-Jorge, H., Rodríguez-Gonzálvez, P., Martínez-Sánchez, J., González-Aguilera, D., Arias, P., Gesto, M., Díaz-Vilariño, L.: Metrological comparison between Kinect I and Kinect II sensors. Measurement 70, 21–26 (2015)

    Article  Google Scholar 

  10. Stoyanov, T., Mojtahedzadeh, R., Andreasson, H., Lilienthal, A.J.: Comparative evaluation of range sensor accuracy for indoor mobile robotics and automated logistics applications. Robot. Auton. Syst. 61(10), 1094–1105 (2013)

    Article  Google Scholar 

  11. Wang, Q., Kurillo, G., Ofli, F., Bajcsy, R.: Evaluation of Pose Tracking Accuracy in the First and Second Generations of Microsoft Kinect. In: 2015 International Conference on Healthcare Informatics (ICHI), pp. 380–389 (2015). doi:10.1109/ICHI.2015.54

  12. Carreira, A., Ventura, R., Gaspar, J.: “Volumetrics-Measuring free volumes” Master Thesis, Instituto Superior Tecnico, Universidade de Lisboa (2013)

  13. Ferreira, B. Q., Griné, M., Gameiro, D., Costeira, J. P., Santos, B. S.: VOLUMNECT: measuring volumes with Kinect. In: Proceedings of SPIE 9013, three-dimensional image processing, measurement (3dipm), and applications 2014, 901304. doi:10.1117/12.2036493 (2014)

  14. Altuntas, C.: Pile volume measurement by range imaging camera in indoor environment. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(5), 35–39 (2014)

    Google Scholar 

  15. Hamamura, Y. K. M. M. T., Irie, B.: The Measurement of Carried Cartons using Multiple Kinect Sensors. In: Proceeding of MVA2013 IAPR international conference on machine vision applications (2013)

  16. Bhandari, A., Feigin, M., Izadi, S., Rhemann, C., Schmidt, M., Raskar, R.: Resolving multipath interference. In: Kinect: IEEE SENSORS proceedings an inverse problem approach, pp. 614–617 (2014)

  17. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  18. Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. J. Comput. Vis. Image Underst. 78(1), 138–156 (2000)

    Article  Google Scholar 

  19. Distante, C., Indiveri, G.: RANSAC-LEL: An optimized version with least entropy like estimators. In: 18th IEEE international conference on image processing (ICIP), IEEE, Piscataway (2011)

  20. Sell, J., O’Connor, P.: The XBOX one system on a chip and kinect sensor. IEEE Micro 34(2), 44–53 (2014)

    Article  Google Scholar 

  21. Lachat, E., Macher, H., Landes, T., Grussenmeyer, P.: Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling. Remote Sens. 7(10), 13070–13097 (2015)

    Article  Google Scholar 

  22. Kim, C., Yun, S., Jung, S.W., Won, C.S.: Color and Depth Image Correspondence for Kinect v2. Lecture Notes Electrical Engineering, vol. 354, pp. 111–116. Springer, Berlin (2015)

  23. Indiveri, G.: An entropy-like estimator for robust parameter identification. Entropy 11(4), 560–585 (2009). doi:10.3390/e11040560

    Article  MathSciNet  MATH  Google Scholar 

  24. Lachat, E., Macher, H., Mittet, M.-A., Landes, T., Grussenmeyer, P.: First experiences with kinect v2 sensor for close range 3d modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(5), 93–100 (2015)

  25. Freeman, H., Shapira, R.: Determining the minimum-area encasing rectangle for an arbitrary closed curve. Commun. ACM 18(7), 409–413 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. De Marco, T., Distante, C., Indiveri, G.: Notes on a robust plane detection approach in 3D. In: IFAC proceedings volumes, 8th IFAC symposium on intelligent autonomous vehicles, Vol. 46(10), pp. 205–210 (2013)

  27. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  28. Corti, A., Giancola, S., Mainetti, G., Sala, R.: A metrological characterization of the Kinect V2 time-of-flight camera. Robot. Auton. Syst. 75, 584–594 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, M., Natale, A., Del-Coco, M. et al. Robust Estimation of Object Dimensions and External Defect Detection with a Low-Cost Sensor. J Nondestruct Eval 36, 17 (2017). https://doi.org/10.1007/s10921-017-0395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0395-7

Keywords

Navigation