Inspecting Marquetries at Different Wavelengths: The Preliminary Numerical Approach as Aid for a Wide-Range of Non-destructive Tests

  • S. Sfarra
  • P. Theodorakeas
  • J. Černecký
  • E. Pivarčiová
  • S. Perilli
  • M. Koui


The present study is based on the non-destructive inspection of two marquetries representing arms’ coats, which were produced by the Technical University in Zvolen (Slovakia) and tested under laboratory conditions. The aforesaid samples were made of traditional European and exotic wood species, while the veneers of the decorative layers were prepared through the technology cutting technique, emphasizing in such a manner the wooden texture. One sample was a defect-free panel, while the second one consisted of three sub-superficial flaws and one superficial putty insert, added during the manufacturing stage. The samples were inspected by different non-destructive techniques, such as visible imaging, ultraviolet testing, near-infrared reflectography and transmittography, infrared thermography, holographic interferometry, digital image correlation, laser speckle contrast imaging and ultrasonic testing. Sometimes a comparison was not performed, by avoiding unnecessary data processing. Numerical simulations focusing on the optimization of the provided thermal flux anticipated the experimental results. The latter analysis proved the necessity for the integration of experimental and numerical testing in similar case studies. A peculiarity of this work is the additional creation of an ad hoc Matlab\(^\circledR \) code, written under the LSCI conditions, which identifies the wooden texture. The interactive methodology applied in the present study verified the synergy of the selected inspection methods enabling the production of a complete view for the preservation state of the inspected marquetry samples, through the comparison and/or the correlation of the individual informative content produced by each inspection procedure.


Marquetry Wood Non-destructive testing techniques Numerical simulation Flaw Manufacturing Process 


  1. 1.
    Hamilton Jackson, F.: Intarsia and marquetry—historical notes—antiquity. In: Curnow, R., Walsh, L., The Online Distributed Proofreading Team at (eds.) Handbooks for the Designer and Craftsman. William Hodge and Company, Glasgow (2009).
  2. 2.
    Porter, B.: Timber. In: Rose, R. (ed.) Carpentry and Joinery 1. Butterworth Heinemann, Great Britain (2001).
  3. 3.
    Edwards, C.: Improving the decoration of furniture: imitation and mechanization in the marquetry process in Britain and America, 1850–1900. Technol. Cult. 53(2), 401–434 (2012). doi: 10.1353/tech.2012.0073 CrossRefGoogle Scholar
  4. 4.
    Triboulot, M.C., Lavigne, E., Monteau, L., Boucher, N., Pizzi, A., Tekely, P.: The restoration of old wood furniture marquetry: protein glues, their analysis, upgrading and rehidratation. Holzforsch. Holzverwert. 48(4), 61–65 (1996). doi: 10.1016/j.indcrop.2015.02.030 Google Scholar
  5. 5.
    Ruzinska, E., Jabłonski, M.: Experimental model equipment for effective evaluation quality surface treatment of wooden materials. Ann. Warsaw Univ. Life Sci. SGGW For. Wood Technol. 70, 259–263 (2010)Google Scholar
  6. 6.
    Ruffinatto, F., Cremonini, C., Macchioni, N., Zanuttini, R.: Application of reflected light microscopy for non-invasive wood identification of marquetry furniture and small wood carvings. J. Cult. Herit. 15(6), 614–620 (2014). doi: 10.1163/22941932-90000026 CrossRefGoogle Scholar
  7. 7.
    Luxford, N., Strlic, M., Thickett, D.: Safe display parameters for veneer and marquetry objects: a review of the available information for wooden collections. Stud. Conserv. 58(1), 1–12 (2013). doi: 10.1179/2047058412Y CrossRefGoogle Scholar
  8. 8.
    Huber, J.: Conservation in focus: true colours revealed. Icon News 48, 30–32 (2013).
  9. 9.
    Sfarra, S., Theodorakeas, P., Avdelidis, N.P., Koui, M.: Thermographic, ultrasonic and optical methods: a new dimension in veneered wood diagnostics. Russ. J. Nondestruct. 49(4), 234–250 (2013). doi: 10.1134/S1061830913040062 CrossRefGoogle Scholar
  10. 10.
    Radovanovic, M., Madic, M.: Experimental investigations of CO\(_{2}\) laser cut quality: a review. Nonconv. Technol. Rev. 4, 35–42 (2011). %20Investigations%20Of%20CO2%20Laser%20Cut%20Quality.pdf
  11. 11.
    Cernecky, J., Bozek, P., Pivarciova, E.: A new system for measuring the deflection of the beam with the support of digital holographic interferometry. J. Electr. Eng. 66(1), 53–56 (2015)Google Scholar
  12. 12.
    Kreis, T.: Optical foundations of holography. In: Kreis, T. (ed.) Handbook of Holographic Interferometry—Optical and Digital Methods. Wiley-VCH, Weinheim (2005)Google Scholar
  13. 13.
    Sfarra, S., Ibarra-Castanedo, C., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Integrated approach between pulsed thermography, near-infrared reflectography and sandwich holography for wooden panel paintings advanced monitoring. Russ. J. Nondestruct. 47(4), 284–293 (2011). doi: 10.1134/S1061830911040097 CrossRefGoogle Scholar
  14. 14.
    Sfarra, S., Theodorakeas, P., Ibarra-Castanedo, C., Avdelidis, N.P., Paoletti, A., Paoletti, D., Hrissagis, K., Bendada, A., Koui, M., Maldague, X.: Evaluation of defects in panel paintings using infrared, optical and ultrasonic techniques. Insight 54(1), 21–27 (2012). doi: 10.1784/insi.2012.54.1.21 CrossRefGoogle Scholar
  15. 15.
    Sfarra, S., Ibarra-Castanedo, C., Ridolfi, S., Cerichelli, G., Ambrosini, D., Paoletti, D., Maldague, X.: Holographic interferometry (HI), infrared vision and X-ray fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach. Appl. Phys. A 115(3), 1041–1056 (2014). doi: 10.1007/s00339-013-7939-1 CrossRefGoogle Scholar
  16. 16.
    Vest, C.M.: Holographic Interferometry. Wiley, New York (1979)Google Scholar
  17. 17.
    Carslaw, H.S., Jaeger, J.C.: General Theory. Oxford University Press, N.Y, Conduction of Heat in Solids (1946)MATHGoogle Scholar
  18. 18.
    Isachenko, V., Osipova, V., Sukomel, A.: Heat Transfer. University Press of the Pacific, Honolulu (2000)Google Scholar
  19. 19.
    López, G., Basterra, L.A., Acuňa, L.: Estimation of wood density using infrared thermography. Constr. Build. Mater. 42, 29–32 (2013). doi: 10.1016/j.conbuildmat.2013.01.001 CrossRefGoogle Scholar
  20. 20.
    Klein MT, Ibarra-Castanedo C, Maldague XP, Bendada A (2008) A straightforward graphical user interface for basic and advanced signal processing of thermographic infrared sequences. In: Vavilov, V.P., Burleigh, D.D. (eds.) Proceedings of SPIE 6939. Thermosense XXX, vol. 6939, Orlando. doi: 10.1117/12.776781
  21. 21.
    Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Ahmed, T., Wang, D.: Enhancement and reconstruction of thermographic NDT data. In: Maldague, X.P., Rozlosnik, A.E. (eds.) Proceedings of SPIE, Thermosense XXIV, vol. 4710. doi: 10.1117/12.459603, Orlando (2002)
  22. 22.
    Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures. Compos. Struct. 58(4), 521–528 (2002). doi: 10.1016/S0263-8223(02)00161-7 CrossRefGoogle Scholar
  23. 23.
    Senarathna, J., Rege, A., Li, N., Thakor, N.V.: Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev. Biomed. Eng. 6, 99–110 (2013). doi: 10.1109/RBME.2013.2243140 CrossRefGoogle Scholar
  24. 24.
    Kirkpatrick, S.J., Duncan, D.D., Wanh, R.K., Hinds, M.T.: Quantitative temporal speckle contrast imaging for tissue mechanics. J. Opt. Soc. Am. A 24(12), 3728–3734 (2007)CrossRefGoogle Scholar
  25. 25.
    Kirkpatrick, S.J., Duncan, D.D., Wells-Gray, E.M.: Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt. Lett. 33(24), 2886–2888 (2008)CrossRefGoogle Scholar
  26. 26.
    Boas, D.A., Dunn, A.K.: Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15(1), 011109 (2010). doi: 10.1117/1.3285504 CrossRefGoogle Scholar
  27. 27.
    Nothdurft, R., Yao, G.: Imaging obscured subsurface inhomogeneity using laser speckle. Opt. Express 13(25), 10034–10039 (2005)CrossRefGoogle Scholar
  28. 28.
    Sfarra, S., Theodorakeas, P., Ibarra-Castanedo, C., Avdelidis, N.P., Paoletti, A., Paoletti, D., Hrissagis, K., Bendada, A., Koui M., Maldague, X.: Importance of integrated results of different non-destructive techniques to evaluate defects in panel paintings: the contribution of infrared, optical and ultrasonic techniques. In: Proceedings of the SPIE 8084, O3A: Optics for Arts, Architecture and Archeology III, Munich, Germany (2011)Google Scholar
  29. 29.
    Cielo, P., Rousset, G., Bertrand, L.: Nondestructive interferometric detection of unbounded layers. Opt. Laser Eng. 5, 231–248 (1984)CrossRefGoogle Scholar
  30. 30.
    Rousset, G., Bertrand, L., Cielo, P.: A pulsed thermoelastic analysis of photothermal surface displacements in layered materials. J. Appl. Phys. 57, 4396–4405 (1985)CrossRefGoogle Scholar
  31. 31.
    Theodorakeas, P., Ibarra-Castanedo, C., Sfarra, S., Avdelidis, N.P., Koui, M., Maldague, X., Paoletti, D., Ambrosini, D.: NDT inspection of plastered mosaics by means of transient thermography and holographic interferometry. NDT&E Int. 47, 150–156 (2012)CrossRefGoogle Scholar
  32. 32.
    Ibarra-Castanedo, C., Sfarra, S., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Diagnostics of panel paintings using holographic interferometry and pulsed thermography. QIRT J. 7(1), 85–114 (2010)CrossRefGoogle Scholar
  33. 33.
    Forest Products Laboratory: Wood Handbook—Wood as an Engineering Material. General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (2010)Google Scholar
  34. 34.
    Beall, F.C.: Specific heat of wood. Research note FPL-0184. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (1968)Google Scholar
  35. 35.
    Perilli, S., Regi, M., Sfarra, S., Nardi, I.: Comparative analysis of heat transfer for an advanced composite material used as insulation in the building field by means of Comsol Multiphysics and Matlabcomputer programs. Rev. Rom. Mater. 46(2), 185–195 (2016)Google Scholar
  36. 36.
    Onofrei, E., Codau, T.C., Petrusic, S., Bedek, G., Dupont, D., Soulat, D.: Analysis of moisture evaporation from underwear designed for fire-fighters. AUTEX Res. J. 14, 1–13 (2014)CrossRefGoogle Scholar
  37. 37.
    Lunkenheimer, P., Wehn, R., Schneider, U., Loidl, A.: Glassy aging dynamics. Phys. Rev. Lett. 95, 055702 (2005)CrossRefGoogle Scholar
  38. 38.
    MacIsaac, D., Kanner, G., Anderson, G.: Basic physics of the incandescent lamp (lightbulb). Phys. Teach. 37, 520–525 (1999)CrossRefGoogle Scholar
  39. 39.
    Petersen, K., Klocke, J.: Understanding he deterioration of paintings by microorganisms and insects. In: Stoner, J.H., Rushfield, B. (eds.) The Conservation of Easel Paintings. Routledge (Taylor & Francis Group), New York (2012)Google Scholar
  40. 40.
    Schellmann Nanke, C.: Animal glues: a review of their key properties relevant to conservation. Rev. Conserv. 8, 55–66 (2007)Google Scholar
  41. 41.
    Sfarra, S., Ibarra-Castanedo, C., Lambiase, F., Paoletti, D., Di Ilio, A., Maldague, X.: From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared. Meas. Sci. Technol. 23, 115601 (2012). doi: 10.1088/0957-0233/23/11/115601 CrossRefGoogle Scholar
  42. 42.
    Sfarra, S., Perilli, S., Paoletti, D., Ambrosini, D.: Ceramics and defects: infrared thermography and numerical simulations a wide-ranging view for quantitative analysis. J. Therm. Anal. Calorim. 123, 43–62 (2015). doi: 10.1007/s10973-015-4974-5 CrossRefGoogle Scholar
  43. 43.
    Theodorakeas, P., Avdelidis, N.P., Cheilakou, E., Koui, M.: Quantitative analysis of plastered mosaics by means of active infrared thermography. Constr. Build. Mater. 73, 417–425 (2014). doi: 10.1016/j.conbuildmat.2014.09.089 CrossRefGoogle Scholar
  44. 44.
    Sfarra, S., Ibarra-Castanedo, C., Ambrosini, D., Paoletti, D., Bendada, A., Maldague, X.: Discovering the defects in paintings using non-destructive testing (NDT) techniques and passing through measurements of deformation. J. Nondestruct. Eval. 33, 358–383 (2014). doi: 10.1007/s10921-013-0223-7 CrossRefGoogle Scholar
  45. 45.
    Avdelidis, N.P., Moropoulou, A.: Emissivity considerations in building thermography. Energy Build. 35, 663–667 (2003)CrossRefGoogle Scholar
  46. 46.
    López, G., Basterra, L.A., Acuňa, L., Casado, M.: Determination of the emissivity of wood for inspection by infrared thermography. J. Nondestruct. Eval. 32, 172–176 (2013). doi: 10.1007/s10921-013-0170-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Sfarra
    • 1
  • P. Theodorakeas
    • 2
  • J. Černecký
    • 3
  • E. Pivarčiová
    • 3
  • S. Perilli
    • 1
  • M. Koui
    • 2
  1. 1.Las.E.R. Laboratory, Department of Industrial and Information Engineering and EconomicsUniversity of L’AquilaL’Aquila (AQ)Italy
  2. 2.NDT Lab, Materials Science & Engineering Department, School of Chemical EngineeringNational Technical University of AthensZografou, AthensGreece
  3. 3.Faculty of Environmental and Technology ManufacturingTechnical University in ZvolenZvolenSlovakia

Personalised recommendations