Skip to main content
Log in

A Novel Methodology for Spatial Damage Detection and Imaging Using a Distributed Carbon Nanotube-Based Composite Sensor Combined with Electrical Impedance Tomography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper describes a novel non-destructive evaluation methodology for imaging of damage in composite materials using the electrical impedance tomography (EIT) technique applied to a distributed carbon nanotube-based sensor. The sensor consists of a nonwoven aramid fabric, which was first coated with nanotubes using a solution casting approach and then infused with epoxy resin through the vacuum assisted resin transfer molding technique. Finally, this composite sensor is cured to become a mechanically-robust, electromechanically-sensitive, and highly customizable distributed two-dimensional sensor which can be adhered to virtually any substrate. By assuming that damage on the sensor directly affects its conductivity, a difference imaging-based EIT algorithm was implemented and tailored to offer two-dimensional maps of conductivity changes, from which damage location and size can be estimated. The reconstruction is based on a newly defined adjacent current–voltage measurement scheme associated with 32 electrodes located along the boundary of the sensor. In this paper, we evaluate our methodology first by introducing well-defined damage where sections are either removed or narrow cuts are made on a series of sensor specimens. Finally, a more realistic damage scenario was investigated to show the capability of our methodology to detect impact damage on a composite laminate. The resulting EIT maps are compared to visual inspection and thermograms taken with an infrared camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thostenson, E.T., Li, C., Chou, T.: Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)

    Article  Google Scholar 

  2. Pandey, G., Thostenson, E.T.: Carbon nanotube-based multifunctional polymer nanocomposites. Polym. Rev. 52, 355–416 (2012)

    Article  Google Scholar 

  3. Hu, N., Fukunaga, H., Atobe, S., Liu, Y., Li, J.: Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11, 10691–10723 (2011)

    Article  Google Scholar 

  4. Gao, L., Thostenson, E.T., Zhang, Z., Chou, T.: Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites. Carbon 47, 1381–1388 (2009)

    Article  Google Scholar 

  5. Kang, I., Schulz, M.J., Kim, J.H., Shanov, V., Shi, D.: A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15, 737 (2006)

    Article  Google Scholar 

  6. Gao, L., Thostenson, E.T., Zhang, Z., Chou, T.: Sensing of damage mechanisms in fiber-reinforced composites under cyclic loading using carbon nanotubes. Adv. Funct. Mater. 19, 123–130 (2009)

    Article  Google Scholar 

  7. Thostenson, E.T., Chou, T.: Carbon nanotube-based health monitoring of mechanically fastened composite joints. Compos. Sci. Technol. 68, 2557–2561 (2008)

    Article  Google Scholar 

  8. Lim, A.S., Melrose, Z.R., Thostenson, E.T., Chou, T.: Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes. Compos. Sci. Technol. 71, 1183–1189 (2011)

    Article  Google Scholar 

  9. Dai, H., Thostenson, E.T., Schumacher, T.: Processing and characterization of a novel distributed strain sensor using carbon nanotube-based nonwoven composites. Sensors 15, 17728–17747 (2015)

    Article  Google Scholar 

  10. Yao, Y., Glisic, B.: Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Sensors 15, 8088–8108 (2015)

    Article  Google Scholar 

  11. Naghashpour, A., Van Hoa, S.: A technique for real-time detecting, locating, and quantifying damage in large polymer composite structures made of carbon fibers and carbon nanotube networks. Struct. Health Monit. 14, 35–45 (2015)

    Article  Google Scholar 

  12. Baltopoulos, A., Polydorides, N., Pambaguian, L., Vavouliotis, A., Kostopoulos, V.: Damage identification in carbon fiber reinforced polymer plates using electrical resistance tomography mapping. J. Compos. Mater. 47, 3285–3301 (2013)

    Article  Google Scholar 

  13. Baltopoulos, A., Polydorides, N., Pambaguian, L., Vavouliotis, A., Kostopoulos, V.: Exploiting carbon nanotube networks for damage assessment of fiber reinforced composites. Compos. B 76, 149–158 (2015)

    Article  Google Scholar 

  14. Loyola, B.R., Briggs, T.M., Arronche, L., Loh, K.J., La Saponara, V., O’Bryan, G., Skinner, J.L.: Detection of spatially distributed damage in fiber-reinforced polymer composites. Struct. Health Monit. 12, 225–239 (2013)

    Article  Google Scholar 

  15. Loyola, B.R., Saponara, V., Loh, K.J., Briggs, T.M., O’Bryan, G., Skinner, J.L.: Spatial sensing using electrical impedance tomography. IEEE Sens. J. 13, 2357–2367 (2013)

    Article  Google Scholar 

  16. Tallman, T.N., Gungor, S., Wang, K., Bakis, C.E.: Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler. Struct. Health Monit. 14, 100–109 (2015)

    Article  Google Scholar 

  17. Hou, T., Loh, K.J., Lynch, J.P.: Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology 18, 315501 (2007)

    Article  Google Scholar 

  18. Loh, K.J., Hou, T., Lynch, J.P., Kotov, N.A.: Carbon nanotube sensing skins for spatial strain and impact damage identification. J. Nondestr. Eval. 28, 9–25 (2009)

    Article  Google Scholar 

  19. Tallman, T.N., Gungor, S., Wang, K., Bakis, C.: Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography. Smart Mater. Struct. 23, 045034 (2014)

    Article  Google Scholar 

  20. Hou, T., Lynch, J.P.: Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures. J. Intell. Mater. Syst. Struct. 20, 1363–1379 (2008)

    Article  Google Scholar 

  21. Hallaji, M., Pour-Ghaz, M.: A new sensing skin for qualitative damage detection in concrete elements: rapid difference imaging with electrical resistance tomography. NDT E Int. 68, 13–21 (2014)

    Article  Google Scholar 

  22. Hallaji, M., Seppänen, A., Pour-Ghaz, M.: Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete. Smart Mater. Struct. 23, 085001 (2014)

    Article  Google Scholar 

  23. Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P.J., Kaipio, J.P.: Electrical resistance tomography imaging of concrete. Cem. Concr. Res. 40, 137–145 (2010)

    Article  Google Scholar 

  24. Dai, H., Schumacher, T., Thostenson, E: Carbon nanotube-based sensing composites for structural health monitoring of civil infrastructure using non-woven fabrics. In: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, Proceedings of the 11th International Conference on Structural Safety and Reliability (ICOSSAR), New York, NY, USA, 16–20 June, 2013, p. 299

  25. Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., Liu, Y., Fukunaga, H.: Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48, 680–687 (2010)

    Article  Google Scholar 

  26. Yu, N., Zhang, Z.H., He, S.Y.: Fracture toughness and fatigue life of MWCNT/epoxy composites. Mater. Sci. Eng. A 494, 380–384 (2008)

    Article  Google Scholar 

  27. Li, C., Thostenson, E.T., Chou, T.: Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68, 1227–1249 (2008)

    Article  Google Scholar 

  28. Schumacher, T., Thostenson, E.T.: Development of structural carbon nanotube-based sensing composites for concrete structures. J. Intell. Mater. Syst. Struct. 25, 1331–1339 (2014)

    Article  Google Scholar 

  29. Saafi, M.: Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 20, 395502 (2009)

    Article  Google Scholar 

  30. Ubertini, F., Laflamme, S., Ceylan, H., Materazzi, A.L., Cerni, G., Saleem, H., D’Alessandro, A., Corradini, A.: Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors. Smart Mater. Struct. 23, 045023 (2014)

    Article  Google Scholar 

  31. Gao, L., Chou, T., Thostenson, E.T., Zhang, Z., Coulaud, M.: In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks. Carbon 49, 3382–3385 (2011)

    Article  Google Scholar 

  32. An, Q., Rider, A.N., Thostenson, E.T.: Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon 50, 4130–4143 (2012)

    Article  Google Scholar 

  33. An, Q., Rider, A.N., Thostenson, E.T.: Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers. ACS Appl. Mater. Interfaces 5, 2022–2032 (2013)

    Article  Google Scholar 

  34. Harikumar, R., Prabu, R., Raghavan, S.: Electrical impedance tomography (EIT) and its medical applications: a review. Int. J. Soft Comput. Eng. 3, 2231–2307 (2013)

    Google Scholar 

  35. Brown, B.: Electrical impedance tomography (EIT): a review. J. Med. Eng. Technol. 27, 97–108 (2003)

    Article  Google Scholar 

  36. Vauhkonen, M.: Electrical impedance tomography and prior information. PhD Dissertation, Univeristy of Kuopio, Finland (1997)

  37. Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  38. Silvera-Tawil, D., Rye, D., Soleimani, M., Velonaki, M.: Electrical impedance tomography for artificial sensitive robotic skin: a review. IEEE Sens. J. 15, 2001–2016 (2015)

    Article  Google Scholar 

  39. Tallman, T.N., Gungor, S., Wang, K., Bakis, C.: Tactile imaging and distributed strain sensing in highly flexible carbon nanofiber/polyurethane nanocomposites. Carbon 95, 485–493 (2015)

    Article  Google Scholar 

  40. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52, 1023–1040 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Polydorides, N.: Image reconstruction algorithms for soft-field tomography. PhD Dissertation, University of Manchester Institute of Science and Technology, UK (2002)

  42. Adler, A., Guardo, R.: Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans. Med. Imaging 15, 170–179 (1996)

    Article  Google Scholar 

  43. Bera, T.K., Nagaraju, J.: A MATLAB-based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013)

  44. Polydorides, N., Lionheart, W.R.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 2002, 13 (1871)

    Google Scholar 

  45. Persson, P., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46, 329–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Vauhkonen, P.J., Vauhkonen, M., Savolainen, T., Kaipio, J.P.: Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 46, 1150–1160 (1999)

    Article  Google Scholar 

  47. Richardson, M., Wisheart, M.: Review of low-velocity impact properties of composite materials. Compos. A 27, 1123–1131 (1996)

    Article  Google Scholar 

  48. ASTM Standard: D7136/D7136M-05, Standard Test Method for Measuring the Damage Resistance of a Fiberreinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International, West Conshohocken (2005)

    Google Scholar 

  49. Graham, B., Adler, A.: Objective selection of hyperparameter for EIT. Physiol. Meas. 27, S65 (2006)

    Article  Google Scholar 

  50. Titman, D.: Applications of thermography in non-destructive testing of structures. NDT E Int. 34, 149–154 (2001)

  51. Grinzato, E.: State of the art and perspective of infrared thermography applied to building science. In: Meola, C. (ed.) Infrared Thermography Recent Advances and Future Trends, pp. 200–229. Bentham eBooks, New York (2012)

    Google Scholar 

  52. Breitenstein, O., Langenkamp, M., Altmann, F., Katzer, D., Lindner, A., Eggers, H.: Microscopic lock-in thermography investigation of leakage sites in integrated circuits. Revi Sci Instrum. 71, 4155 (2000)

    Article  Google Scholar 

  53. Ge, Z., Du, X., Yang, L., Yang, Y., Li, Y., Jin, Y.: Performance monitoring of direct air-cooled power generating unit with infrared thermography. Appl Therm Eng. 31, 418–424 (2011)

    Article  Google Scholar 

  54. Meola, C., Carlomagno, G.M., Squillace, A., Vitiello, A.: Non-destructive evaluation of aerospace materials with lock-in thermography. Eng. Fail. Anal. 13, 380–388 (2006)

    Article  Google Scholar 

  55. Menaka, M., Bagavathiappan, S., Venkatraman, B., Jayakumar, T., Raj, B.: Characterisation of adhesively bonded laminates using radiography and infrared thermal imaging techniques. Insight-Non-Destruct. Testi. Cond. Monit. 48, 606–612 (2006)

    Article  Google Scholar 

  56. Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J., Jayakumar, T.: Infrared thermography for condition monitoring—a review. infrared Phys. Technol. 60, 35–55 (2013)

    Article  Google Scholar 

  57. Boyle, A., Adler, A.: The impact of electrode area, contact impedance and boundary shape on EIT images. Physiol. Meas. 32, 745 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The support of this collaborative research effort by the National Science Foundation, CMMI Division, Award # 1234830 (Dr. Kishor Mehta, Program Director) is greatly appreciated. The authors would like to thank Technical Fibre Products (TFP) for donating the nonwoven fabrics used in this research. We also would like to acknowledge Dr. Dirk Heider from Center for Composite Materials at University of Delaware for his supply of the infrared camera used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Gallo, G.J., Schumacher, T. et al. A Novel Methodology for Spatial Damage Detection and Imaging Using a Distributed Carbon Nanotube-Based Composite Sensor Combined with Electrical Impedance Tomography. J Nondestruct Eval 35, 26 (2016). https://doi.org/10.1007/s10921-016-0341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-016-0341-0

Keywords

Navigation