Thermal (IR) and Other NDT Techniques for Improved Material Inspection

  • D. Balageas
  • X. Maldague
  • D. Burleigh
  • V. P. Vavilov
  • B. Oswald-Tranta
  • J.-M. Roche
  • C. Pradere
  • G. M. Carlomagno
Part of the following topical collections:
  1. Thermography


Thermal nondestructive testing (TNDT) may be considered to be a more widely applicable method than many traditional techniques, such as X ray, ultrasonic, eddy current, liquid penetrant, etc. It can be applied to both metals and non-metals containing subsurface defects such as cracks, foreign inclusions, disbonds, delaminations, variations in thermal properties, etc. This is especially true for composite materials, and TNDT is very appropriate for screening purposes. TNDT test results may be analyzed by advanced image processing algorithms. This paper provides a concise review of composite NDT using TNDT in combination with other inspection techniques, providing an opportunity for data fusion.


Thermal nondestructive testing  Infrared thermography  Data fusion Vibrothermography Ultrasonic testing Induction heating 


  1. 1.
    Green, D.R.: An instrument for nondestructively testing fuel core to cladding heat transfer. Nucl. Sci. Eng. 12, 271–277 (1962)Google Scholar
  2. 2.
    Green, D.R.: Emissivity-independent infrared thermal testing method. Mater. Eval. 23(2), 79–85 (1965)Google Scholar
  3. 3.
    Beller, W.S.: Navy sees promise in infrared thermography for solid case checking. Missiles Rockets 22, 1234–1241 (1965)Google Scholar
  4. 4.
    Carlomagno, G.M., Berardi, P.G.: Unsteady thermophototopography in nondestructive testing. In: Proceedings of 3rd biannual exchange, St. Louis, pp. 33–39. (1976)Google Scholar
  5. 5.
    Rosencwaig, A., Gersho, A.: Thermal-wave imaging. Science 218, 223–228 (1982)CrossRefGoogle Scholar
  6. 6.
    Vavilov, V.P., Taylor, R.: Theoretical and practical aspects of the thermal NDT of bonded structures. In: Sharpe, R.S. (ed.) Research Techniques in NDT, vol. 5, pp. 239–279. Academic Press, London (1982)Google Scholar
  7. 7.
    Cielo, P.: Pulse photothermal evaluation of layered materials. J. Appl. Phys. 56(1), 230–234 (1984)CrossRefGoogle Scholar
  8. 8.
    Almond, D., Patel, P.: Photothermal Science and Techniques. Chapman & Hall, London (1996)Google Scholar
  9. 9.
    Willburn, D.K.: Survey of infrared inspection and measurement techniques. Mater. Res. Stand. 1, 528 (1961)Google Scholar
  10. 10.
    McGonnagle, W., Park, F.: Nondestructive testing. Intern. Sci. Technol. 7, 14 (1964)Google Scholar
  11. 11.
    Burleigh, D.: A bibliography of nondestructive testing (NDT) of composite materials performed with infrared thermography and liquid crystals. In: Proceeding of SPIE Thermosense-IX, vol. 780, pp. 250–255 (1987)Google Scholar
  12. 12.
    Maldague, X.:Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley Series in Microwave and Optical Engineering. Wiley, New York (2001)Google Scholar
  13. 13.
    Balageas, D.L., Krapez, J.-C., Cielo, P.: Pulsed photo-thermal modeling of layered materials. J. Appl. Phys. 59(2), 348–357 (1986)CrossRefGoogle Scholar
  14. 14.
    Vavilov, V.P., Burleigh, D.D.: Review of pulsed thermal NDT: physical principles, theory and data processing. NDT E Int. 73, 28–52 (2015)CrossRefGoogle Scholar
  15. 15.
    Vavilov, V.: Thermal NDT: historical milestones, state-of-the-art and trends. Quant. Infrared Therm. J. 11(1), 66–83 (2014)CrossRefGoogle Scholar
  16. 16.
    Carpenter J.L., Stuhrke W.F. (1976) NDE - An effective approach to improved reliability and safety. A technology survey, Martin Marietts Corporation, Orlando, Florida, USA, N76 25375 (NASA CR 134963): 178Google Scholar
  17. 17.
    Cawley, P.J.: Non-destructive testing–current capabilities and future directions. J. Mater. Des. Appl. 215, 213–223 (2001)Google Scholar
  18. 18.
    Cramer, K., Winfree, W., Hodges, K., Koshti, A., Ryan, D., Reinhard, WW.: Status of thermal NDT of space shuttle materials at NASA. In: Proceedings of SPIE “Thermosense-XXVIII”, vol. 6205, p. 62051B1-9 (2006)Google Scholar
  19. 19.
    Burleigh D.A.: Portable, combined thermography/shearography NDT system for inspecting large composite structures. In: Proceeding of SPIE “Thermosense-XXIV” vol. 4710, pp. 578–587 (2002)Google Scholar
  20. 20.
    Winfree, W.P.: Enhanced Thermographic Detection of Delaminations with Computational Pulse Shaping. Rev of Progress in Quant NDE, pp. 441–448. New York, Plenum Press (1998)Google Scholar
  21. 21.
    Pilla M., Galmiche F., Maldague M.: Thermographic inspection of cracked solar cells. In: Proceedings SPIE “Thermosense XXIV”, vol. 4710, pp. 699–703 (2002)Google Scholar
  22. 22.
    Swiderski, W., Nesteruk, D.A., Vavilov, V.P., Derusova, D.A.: Data fusion in IR thermographic detection of landmines and NDT of composites. Atti della Fondazione Giorgio Ronchi, Anno LXIX, Edizione Tassinari, Firenze, Italy 4, 473–478 (2014)Google Scholar
  23. 23.
    Grosso, M., Marinho, C.A., Nesteruk, D.A., Rebello, J.M., Soares, S.D., Vavilov, V.P.: Evaluating quality of adhesive joints in glass fiber plastic piping by using active thermal NDT. In: Proceedings of SPIE “Thermosense-XXXV”, vol. 8705, p. 87050T (2013)Google Scholar
  24. 24.
    Roche, J.-M., Lamboul, B., Grail, G., Osmont, D., Balageas, D.: Thermal and ultrasonic damage monitoring and characterization in woven composites. In: 19th International Conference on Composite Materials (ICCM 19), Montreal, 2–11 (2013)Google Scholar
  25. 25.
    Balageas, D., Levesque, P., Brunet, P., Cluzel, C., Déom, A., Blanchard, L.: Thermography as a routine diagnostic for mechanical testing of composites. Quant. InfraRed Therm. J. 5(1), 45–68 (2008)CrossRefGoogle Scholar
  26. 26.
    Balageas, D., Roche, J.-M., Leroy, F.-H., Liu, W.-M., Gorbach, A.: The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images. Biocybern. Biomed. Eng. J. 35, 1–9 (2015)CrossRefGoogle Scholar
  27. 27.
    Balageas, D.: In search of early time. An original approach in the thermographic identification of the thermophysical properties and defects. Adv. Opt. Technol. doi: 10.1155/2013/314906
  28. 28.
    Roche, J.-M., Passilly, F., Leroy, F.-H., Lapeyronnie, P., Fagiano, G.: Thermal non-destructive characterization and in situ damage monitoring of a composite suspension wishbone. PhotoMechanics Conference, Delft (2015)Google Scholar
  29. 29.
    Duan, Y., Servais, P., Genest, M., Ibarra-Castanedo, C., Maldague, X.P.V.: ThermoPoD: a reliability study on active infrared thermography for the inspection of composite materials. In: International Conference Materials and Reliability (ICMR 2011), Busan, Korea (2011)Google Scholar
  30. 30.
    Duan, Y., Servais, P., Genest, M., Ibarra-Castanedo, C., Maldague, X.P.V.: ThermoPoD: a reliability study on active infrared thermography for the inspection of composite materials. J. Mech. Sci. Technol. 26(7), 1985–1992 (2012)CrossRefGoogle Scholar
  31. 31.
    Oswald-Tranta, B., O’Leary, P.: Fusion of geometric and thermographic data for automated defect detection. J. Electron. Imaging 21(2), 021108–021118 (2012)CrossRefGoogle Scholar
  32. 32.
    Henneke, E.G., Reifsnider, K.L., Stinchcomb, W.W.: Thermography, an NDI method for damage detection. J. Met. 31(9), 11–15 (1979)Google Scholar
  33. 33.
    Pye, C.J., Adams, R.D.J.: Heat emission from damaged materials and its use in nondestructive testing. J. Phys. D 14, 927 (1981)CrossRefGoogle Scholar
  34. 34.
    Mignona, R.B., Green Jr, R.E., Duke Jr, J.C.: Thermographic investigation of high-power ultrasonic heating in materials. Ultrasonics 19, 159–163 (1981)CrossRefGoogle Scholar
  35. 35.
    Zweschper, T., Dillenz, A., Busse, G.: Ultrasound lock-in thermography: a defect selective method for the inspection of aerospace components. Insight 43, 173–179 (2001)Google Scholar
  36. 36.
    Morbidini, M., Cawley, P., Barden, T., Almond, D.: Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements. J. Appl. Phys. 100, 104905 (2006). doi: 10.1063/1.2361091 CrossRefGoogle Scholar
  37. 37.
    Morbidini, M., Cawley, P.: A calibration procedure for sonic infrared nondestructive evaluation. J. Appl. Phys. 106, 023504-1–023504-7 (2009)CrossRefGoogle Scholar
  38. 38.
    Holland, S.D., Uhl, C., Ouyang, Z., Bantel, T., Li, M., Meeker, W.Q., Lively, J., Brasche, L.: Quantifying the vibrothermographic effect. NDT E Int. 44, 775–782 (2011)CrossRefGoogle Scholar
  39. 39.
    Guo, X., Vavilov, V.P.: Crack detection in aluminum parts by using ultrasound-excited infrared thermography. Infrared Phys. Technol. 61, 149–156 (2013)CrossRefGoogle Scholar
  40. 40.
    Sfarra, S., Ibarra-Castanedo, C., Avdelidis, N.P., Genest, M., Bouchagier, L., Kourousis, D., Tsimogiannis, A., Anastassopoulous, A., Bendada, A., Maldague, X., Ambrosini, D., Paoletti ,D.: A comparative investigation for the nondestructive testing of honeycomb structures by holographic interferometry and infrared thermography. 15th ICPPP, 24–28 July 2009, Leuven, Belgium. Publication. In: Journal of Physics: Conference Series 214 (2010): 012071 (2009)Google Scholar
  41. 41.
    Ibarra-Castanedo, C., Piau, J.-M., Guilbert, S., Avdelidis, N.P., Genest, M., Bendada, A., Maldague, X.P.V.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20, 1–31 (2009)CrossRefGoogle Scholar
  42. 42.
    Genest, M., Forsyth, D.S., Maldague, X.: Comparison of solid highlighter materials for thermography. CINDE J. 28(4), 7–12 (2007)Google Scholar
  43. 43.
    Solodov, I., Rahammer, M., Derusova, D., Busse, G.: Highly-efficient and noncontact vibro-thermography via local defect resonance. Quant. Infrared Therm. J. 12(1), 98–111 (2015)CrossRefGoogle Scholar
  44. 44.
    Krapez, J.-C., Taillade, F., Balageas, D.: Ultrasound-lockin-thermography NDE of composite plates with low power actuators. Experimental investigation of the influence of the Lamb wave frequency. Quant. Infrared Therm. J. 2(2), 191–206 (2005)CrossRefGoogle Scholar
  45. 45.
    Riegert, G., Zweschper, T., Busse, G.: Lockin thermography with eddy current excitation. Quant. Infrared Therm. J. 1(1), 21–31 (2004)CrossRefGoogle Scholar
  46. 46.
    Oswald-Tranta, B.: Thermoinductive investigations of magnetic materials for surfacecracks. Quant. Infrared Therm. J. 1(1), 33–46 (2004)CrossRefGoogle Scholar
  47. 47.
    Riegert, G., Gleiter, A., Busse, G.: Potential and limitations of eddy current lockin-thermography. In: Proceedings of SPIE “Thermosense XXVIII”, vol. 6205, p. 62051E (2006). doi: 10.1117/12.662716
  48. 48.
    Oswald-Tranta, B., Sorger, M.: Detection of subsurface defects in aluminium with thermo-inductive inspection. In: Proceedings of SPIE, “Thermosense XXXIII”, vol. 8013, p. 801310 (2011). doi: 10.1117/12.887193
  49. 49.
    Oswald-Tranta, B., Sorger, M.: Scanning pulse phase thermography with line heating. Quant. Infrared Therm. J. 9(2), 103–122 (2012)CrossRefGoogle Scholar
  50. 50.
    Oswald-Tranta, B.: Thermo-inductive crack detection. J. Nondestruct. Test. Eval. 22(2–3), 137–153 (2007)CrossRefGoogle Scholar
  51. 51.
    Zenzinger, G., et al.: Thermographic crack detection by eddy current excitation. J. Nondestruct. Test. Eval. 22(2–3), 101–111 (2007)CrossRefGoogle Scholar
  52. 52.
    Wilson, J., et al.: Modelling and evaluation of eddy current stimulated thermography. J. Nondestruct. Test. Eval. 25(3), 205–218 (2010)CrossRefGoogle Scholar
  53. 53.
    Kremer, K., et al.: Das Therm-O-Matic-Verfahren - ein neuartiges Verfahren für die Online-prüfung von Stahlerzeugnissen auf Oberflächenfehler. Stahl Eisen 105, 39–44 (1985). (in German)Google Scholar
  54. 54.
    Oswald-Tranta, B., Sorger, M.: Localizing surface cracks with inductive thermographical inspection: from measurement to image processing. Quant. Infrared Therm. J. 8(2), 149–164 (2011)CrossRefGoogle Scholar
  55. 55.
    Oswald-Tranta, B., Schmidt, R.: Crack depth determination with inductive thermography. In: Proceeding SPIE “Thermosense XXXVII”, vol. 9485, pp. 9485–9512 (2015)Google Scholar
  56. 56.
    Maldague, X., Marinetti, S.: Pulse phase infrared thermography. J. Appl. Phys. 79(5), 2694–2698 (1996)CrossRefGoogle Scholar
  57. 57.
    Tran-Gia, P., Maldague, X., Birglen, L.: Crack detection limit in eddy current thermography. In: ASNT Spring Research Conference, pp. 1–6 (2013)Google Scholar
  58. 58.
    Carslaw and Jaeger: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)Google Scholar
  59. 59.
    Hasegawa, T.: A New Method of Observing Electromagnetic Fields at High Frequencies by Use of Test Paper. Bulletin of Yamagata University IV, Yamagata (1955)Google Scholar
  60. 60.
    Gregoris, L., Iizuka, K.: Thermography in microwave holography. Appl. Opt. 14(7), 1487–1489 (1975)CrossRefGoogle Scholar
  61. 61.
    Sega, R.M., Benkelman, C.A., Norgard, J.D.: Measurements of antenna patterns at 94 GHz using infrared detection. In: Proceedings SPIE “Millimeter Wave Technology III”, vol. 544, pp. 234–240 (1985)Google Scholar
  62. 62.
    Norgard, J., Musselman, R.: Direct infrared measurement of phase array near-field and far-field antenna patterns. Quant. Infrared Therm. J. 2(1), 113–125 (2005)CrossRefGoogle Scholar
  63. 63.
    Balageas, D., Levesque, P.: EMIR: a photothermal tool for electromagnetic phenomena characterization. Rev. Gén. Therm. 37(8), 725–739 (1998)CrossRefGoogle Scholar
  64. 64.
    Balageas, D., Bourasseau, S., Dupont, M., Bocherens, E.: Dewynter-Marty V. Comparison between nondestructive evaluation techniques and integrated fiber optic health monitoring systems for composite sandwich structures. J. Intell. Mat. Syst. Struct. 11, 426–437 (2000)CrossRefGoogle Scholar
  65. 65.
    Balageas, D., Levesque, P., Nacitas, M., Krapez, J.-C., Gardette, G., Lemistre, M.: Microwaves holography revealed by photothermal films and lock-in IR thermography: application to electromagnetic materials NDE. In: Proceeedings of SPIE “Aging infrastructure and manufacturing 96 Symposium—Nondestructive evaluation of materials and composites”. vol. 2944, pp. 55–66 (1996)Google Scholar
  66. 66.
    Balageas, D., Levesque, P.: Mines detection using the EMIR method. In: Proceedings of QIRT’02 Conference Dubrovnik 24–27, 2002. QIRT Open Archives, (2002)
  67. 67.
    Matveenko, A.N., Medvedev, L.E., Miginsky, S.V., Mironenko, L.A., Ovchar, V.K., Popik, V.M., Salikova, T.V., Scheglov, M.A., Serednyakov, S.S., Shevchenko, O.A., Skrinsky, A.N., Tcheskidov, V.G., Vinokurov, N.A.: Research highlights from the Novosibirsk 400 W average power THz FEL. Terahertz Sci. Technol. 1(2), 107–125 (2008)Google Scholar
  68. 68.
    Pradere, C., Caumes, J.P., Balageas, D., Salort, S., Abraham, E., Chassagne, B., Batsale, J.-C.: Photothermal converters for quantitative 2D and 3D real-time TeraHertz imaging. Quant. Infrared Therm. J. 7(2), 217–235 (2010)CrossRefGoogle Scholar
  69. 69.
    Chulkov, A.O., Gaverina, L., Pradere, C., Batsale, J.-C., Vavilov, V.P.: Detecting hidden water in honeycomb composite structures by using Terahertz thermography. Russ. J. NDT (2015)Google Scholar
  70. 70.
    Ibarra-Castanedo C., Genest M., Maldague X. (2013) Infrared vision: visual inspection beyond the visible spectrum. Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, Zheng Liu Ed., Springer, New York (2013)Google Scholar
  71. 71.
    Pilla, M., Klein, M., Maldague, X., Salerno, A.: New absolute contrast for pulsed thermography. Proc. QIRT 2002, 53–58 (2002)Google Scholar
  72. 72.
    Shepard, S.M.: Advances in pulsed thermography. In: Proceedings of SPIE “Thermosense XXVIII”, vol. 4360, pp. 511–515 (2001)Google Scholar
  73. 73.
    Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58, 521–528 (2002)CrossRefGoogle Scholar
  74. 74.
    López, F., Nicolau, V., Maldague, X., Ibarra-Castanedo, C.: Multivariate signal processing by partial least-squares thermography.In: Proceedings of 7th IWASPNDE, Quebec, Canada pp. 29–34 (2014)Google Scholar
  75. 75.
  76. 76.
    Kriksunov, L.Z.: Handbook on the Basics of Infrared Technique. Sovetskoye radio Publisher, Moscow (1978)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • D. Balageas
    • 1
  • X. Maldague
    • 2
  • D. Burleigh
    • 3
  • V. P. Vavilov
    • 4
  • B. Oswald-Tranta
    • 5
  • J.-M. Roche
    • 6
  • C. Pradere
    • 7
  • G. M. Carlomagno
    • 8
  1. 1.I2M, TREFLE DepartmentUMR ENSAM 5295, University of BordeauxTalenceFrance
  2. 2.Electrical and Computing Engineering DepartmentUniversité LavalQuebecCanada
  3. 3.La Jolla Cove ConsultingSan DiegoUSA
  4. 4.National Research Tomsk Polytechnic UniversityTomskRussia
  5. 5.University LeobenLeobenAustria
  6. 6.Composite Materials and Structures DepartmentONERAChâtillonFrance
  7. 7.I2M-TREFLE DepartmentUMR CNRS 5295, University of BordeauxTalenceFrance
  8. 8.University of Naples Federico IINaplesItaly

Personalised recommendations