Skip to main content
Log in

Inversion of Elastic Constants of Anisotropic (100) Silicon Based on Surface Wave Velocity by Acoustic Microscopy Using Particle Swarm-Based-Simulated Annealing Optimization

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, a new inversion model of elastic constants of anisotropic (100) silicon is established by inducing the hybrid particle swarm optimization-based-simulated annealing optimization. Theoretical analysis on the surface acoustic wave (SAW) velocities of silicon has been carried out to construct the novel objective error function. The SAW velocities along different azimuthal angles are obtained by the V(f,z) analysis based on a lens-less line-focus acoustic microscopy. And the inversed results agree well with the reported data, which proves that this method shows high accuracy and strong reliability for the inversion of elastic constants of anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee, Y.-C., Kim, J.O., Achenbach, J.D.: Acoustic microscopy measurement of elastic constants and mass density. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42(2), 253–264 (1995)

    Article  Google Scholar 

  2. Lematre, M., Benmehrez, Y., Bourse, G., Xu, J.W., Ourak, M.: Acoustic microscopy measurement of elastic constants by using an optimization method on measured and calculated SAW velocities: effect of initial c ij values on the calculation convergence and influence of the LFI transducer parameters on the determination of the SAW velocity. NDT E Int. 35(5), 279–286 (2002)

    Article  Google Scholar 

  3. Lematre, M., Benmehrez, Y., Bourse, G., Xu, J.W., Ourak, M.: Determination of elastic parameters in isotropic plates by using acoustic microscopy measurements and an optimization method. NDT E Int. 35(8), 493–502 (2002)

    Article  Google Scholar 

  4. Yaoita, A., Adachi, T., Yamaji, A.: Determination of elastic moduli for a spherical specimen by resonant ultrasound spectroscopy. NDT E Int. 38(7), 554–560 (2005)

    Article  Google Scholar 

  5. Badawi, K.F., Villain, P., Goudeau, P., Renault, P.O.: Measuring thin film and multilayer elastic constants by coupling in situ tensile testing with x-ray diffraction. Appl. Phys. Lett. 80(25), 4705 (2002)

    Article  Google Scholar 

  6. Reddy, S.S.S., Balasubramaniam, K., Krishnamurthy, C.V., Shankar, M.: Ultrasonic goniometry immersion techniques for the measurement of elastic moduli. Compos. Struct. 67(1), 3–17 (2005)

    Article  Google Scholar 

  7. Wang, L.: Determination of elastic constants of composites by time-resolved acoustic microscopy. Ultrasonics 37(4), 283–289 (1999)

    Article  Google Scholar 

  8. Kim, J.Y., Rokhlin, S.I.: Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy. J. Acoust. Soc. Am. 126(6), 2998–3007 (2009)

    Article  Google Scholar 

  9. Li, W., Achenbach, J.D.: V(z) measurement of multiple leaky wave velocities for elastic constant determination. J. Acoust. Soc. Am. 100(3), 1529–1537 (1996)

    Article  Google Scholar 

  10. Kushibiki, J.-I., Wei, T.-C., Ohashi, Y., Tada, A.: Ultrasonic microspectroscopy characterization of silica glass. J. Appl. Phys. 87, 3113–3121 (2000)

    Article  Google Scholar 

  11. Kushibiki, J.-I., Ohashi, Y., Arakawa, M., Tanaka, T.: Procedures for determining acoustical physical constants of class 6mm single crystals by ultrasonic microspectroscopy technology. J. Appl. Phys. 105(11), 114913 (2009)

    Article  Google Scholar 

  12. Nayfeh, A.H., Anderson, M.J.: Wave propagation in layered anisotropic media with applications to composites. J. Acoust. Soc. Am. 108(2), 471 (2000)

    Article  Google Scholar 

  13. Sermeus, J., Sinha, R., Vanstreels, K., Vereecken, P.M., Glorieux, C.: Determination of elastic properties of a MnO2 coating by surface acoustic wave velocity dispersion analysis. J. Appl. Phys. 116(2), 023503 (2014)

    Article  Google Scholar 

  14. Chung, C.H., Lee, Y.C.: An improved weighting method for inversely determining elastic constants of coating layers from dispersion curves of surface acoustic waves. Exp. Mech. 53(8), 1395–1403 (2013)

    Article  Google Scholar 

  15. Chang, J., Yang, Z., Xu, J.-Q.: Inverse method for the determination of elastic properties of coating layers by the surface ultrasonic waves. Journal of Zhejiang University. Science 6A(9), 945–949 (2005)

    MATH  Google Scholar 

  16. Song, X., Tang, L., Lv, X., Fang, H., Gu, H.: Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J. Appl. Geophys. 84, 1–13 (2012)

    Article  Google Scholar 

  17. Marzani, A., De Marchi, L.: Characterization of the elastic moduli in composite plates via dispersive guided waves data and genetic algorithms. J. Intell. Mater. Syst. Struct. 24(17), 2135–2147 (2012)

    Article  Google Scholar 

  18. Kundu, T., Bereiterhahn, J., Hillmann, K.: Measuring elastic properties of cells by evaluation of scanning acoustic microscopy V(Z) values using simplex algorithm. Biophys. J. 59(6), 1194–1207 (1991)

    Article  Google Scholar 

  19. Yan, L., Cunfu, H., Guorong, S., Bin, W., Chung, C.-H., Lee, Y.-C.: Elastic properties inversion of an isotropic plate by hybrid particle swarm-based-simulated annealing optimization technique from leaky lamb wave measurements using acoustic microscopy. J. Nondestruct. Eval. 33(4), 651–662 (2014)

  20. Yan, Lu, Cunfu, He, Song Guorong, Wu, Bin, Cheng-Hsien Chung, Lee, Yung-Chun: Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements on anisotropy of a (100) silicon. Ultrasonics 54, 296–304 (2014)

    Article  Google Scholar 

  21. K\(\imath \)ran, M.S., Gündüz, M., Baykan, Ö.K.: A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum. Appl. Math. Comput. 219(4), 1515–1521 (2012)

  22. Chung, C.-H., Lee, Y.-C.: Fabrication of poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers and measurements of elastic constants of thin plates[J]. NDT E Int. 43(2), 96–105 (2010)

    Article  MathSciNet  Google Scholar 

  23. Lee, Y.-C., Ko, S.-P.: Measuring dispersion curves of acoustic waves using PVDF line-focus transducers. NDT E Int. 34(3), 191–197 (2001)

    Article  Google Scholar 

  24. Zou, W., Holland, S., Kim, K.Y., Sachse, W.: Wideband high-frequency line-focus PVDF transducer for materials characterization. Ultrasonics 41(3), 157–161 (2003)

    Article  Google Scholar 

  25. Chung, C.-H., Lee, Y.-C.: Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials. J. Nondestruct. Eval. 28(3–4), 101–110 (2009)

    Article  Google Scholar 

  26. Auld, B.A.: Acoustic Fields and Waves in Solid. Krieger, Huntington (1990)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper is supported by the national Natural Science Foundation of China (NSFC, No. 61271372 & No. 51235001), and the Key Program of the NSFC (No. 11172014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Song.

Appendix

Appendix

The coefficient matrix of the Christoffel equations can be described as the matrix [\(K_{ij}\)]\(_{3\times 3}\) in Eq. (3). So the equations are written as:

$$\begin{aligned} \left[ {{\begin{array}{*{20}c} &{} &{} \\ &{} {K_{ij} } &{} \\ &{} &{} \\ \end{array} }} \right] _{3\times 3} \cdot \left[ {{\begin{array}{*{20}c} {U_1 } \\ {U_2 } \\ {U_3 } \\ \end{array} }} \right] =0 \end{aligned}$$
(13)

where the elements of the matrix [\(K_{ij}\)]\(_{3\times 3}\) are listed as:

$$\begin{aligned} \begin{array}{l} K_{{11}} ={C}'_{11} {+2}{C}'_{{15}} \alpha +{C}'_{{55}} \alpha ^2-\rho c^{2} \\ K_{{12}} =K_{{21}} ={C}'_{{16}} +{C}'_{{14}} \alpha +{C}'_{{56}} \alpha +{C}'_{{54}} \alpha ^2 \\ K_{{13}} =K_{{31}} ={C}'_{{15}} +{C}'_{{13}} \alpha +{C}'_{{55}} \alpha +{C}'_{{53}} \alpha ^2 \\ K_{{22}} ={C}'_{{66}} {+2}{C}'_{{46}} \alpha +{C}'_{{44}} \alpha ^2-\rho c^{2} \\ K_{{23}} =K_{{32}} ={C}'_{{65}} +{C}'_{{63}} \alpha +{C}'_{{45}} \alpha +{C}'_{{43}} \alpha ^2 \\ K_{{33}} ={C}'_{{55}} {+2}{C}'_{{35}} \alpha +{C}'_{{33}} \alpha ^2-\rho c^{2} \\ \end{array} \end{aligned}$$
(14)

where \({C}'_{IJ} \) are the elastic constants in the local coordinate system (\({x}'_1 \),\({x}'_2 \),\({x}'_3 )\). When the density \(\rho \) and phase velocity c are given, three different solutions \(\alpha \) \(_{q }(q\)=1\(\sim \)3) of the undetermined component \(\alpha \) will be obtained. And [\(K_{ij}\)(\(\alpha \))]\(_{3\times 3}\) will be calculated by substituting \(\alpha \) \(_{q }\)into the matrix [\(K_{ij}\)]\(_{3\times 3}\), the expression of \(U_{iq}\) in Eq. (6) are:

$$\begin{aligned} U_{1q}= & {} 1 \nonumber \\ U_{2q}= & {} \frac{K_{\text{11 }} (\alpha _q )K_{\text{23 }} (\alpha _q )-K_{13} (\alpha _q )K_{12} (\alpha _q )}{K_{13} (\alpha _q )K_{22} (\alpha _q )-K_{\text{12 }} (\alpha _q )K_{\text{23 }} (\alpha _q )} \\ U_{3q}= & {} \frac{K_{\text{11 }} (\alpha _q )K_{\text{23 }} (\alpha _q )-K_{13} (\alpha _q )K_{\text{12 }} (\alpha _q )}{K_{12} (\alpha _q )K_{33} (\alpha _q )-K_{23} (\alpha _q )K_{13} (\alpha _q )} \nonumber \end{aligned}$$
(15)

Substituting Eq. (6) into the general Hooke’s law leads to the stress (\(\sigma \) \(_{33}\), \(\sigma \) \(_{13}\), \(\sigma \) \(_{23})\) components, and on the surface of material we have:

$$\begin{aligned} ( {\sigma _{33} ,\sigma _{13} ,\sigma _{23} })= & {} \sum \limits _{q=1}^3 ( {D_{1q} ,D_{2q} ,D_{3q} })A_q \cdot \sqrt{-1} \xi \nonumber \\&\cdot \exp \left[ {\sqrt{-1} \xi ( {x_1 -ct})} \right] \end{aligned}$$
(16)

where the expressions of \(D_{iq}\) are:

$$\begin{aligned} D_{1q}= & {} {C}'_{13} {+{C}'}_{36} \cdot U_{2q} +{C}'_{35} \cdot U_{3q} +{C}'_{35} \cdot \alpha _q\nonumber \\&+{C}'_{34} \cdot U_{2q} \cdot \alpha _q +{C}'_{33} \cdot U_{3q} \cdot \alpha _q \nonumber \\ D_{2q}= & {} {C}'_{15} +{C}'_{56} \cdot U_{2q} +{C}'_{55} \cdot U_{3q} +{C}'_{55} \cdot \alpha _q \nonumber \\&+{C}'_{54} \cdot U_{2q} \cdot \alpha _q +{C}'_{53} \cdot U_{3q} \cdot \alpha _q \nonumber \\ D_{3q}= & {} {C}'_{14} +{C}'_{46} \cdot U_{2q} +{C}'_{45} \cdot U_{3q} +{C}'_{45} \cdot \alpha _q \nonumber \\&+{C}'_{44} \cdot U_{2q} \cdot \alpha _q +{C}'_{43} \cdot U_{3q} \cdot \alpha _q \end{aligned}$$
(17)

Finally, the coefficient matrix [M]\(_{3\times 3 }\) will be derived:

$$\begin{aligned} \left[ M \right] _{3\times 3} =\left[ {{\begin{array}{*{20}c} {D_{11} } &{} {D_{12} } &{} {D_{13} } \\ {D_{21} } &{} {D_{22} } &{} {D_{23} } \\ {D_{31} } &{} {D_{32} } &{} {D_{33} } \\ \end{array} }} \right] \cdot \sqrt{-1} \xi \cdot \exp \left[ {\sqrt{-1} \xi ( {x_1 -ct})} \right] \end{aligned}$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Hong, G., Lu, Y. et al. Inversion of Elastic Constants of Anisotropic (100) Silicon Based on Surface Wave Velocity by Acoustic Microscopy Using Particle Swarm-Based-Simulated Annealing Optimization. J Nondestruct Eval 34, 43 (2015). https://doi.org/10.1007/s10921-015-0316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0316-6

Keywords

Navigation