Inversion of Elastic Constants of Anisotropic (100) Silicon Based on Surface Wave Velocity by Acoustic Microscopy Using Particle Swarm-Based-Simulated Annealing Optimization

  • Guorong Song
  • Guangfu Hong
  • Yan Lu
  • Yuyang Xu
  • Dengqian Qin
  • Bin Wu
  • Cunfu He


In this paper, a new inversion model of elastic constants of anisotropic (100) silicon is established by inducing the hybrid particle swarm optimization-based-simulated annealing optimization. Theoretical analysis on the surface acoustic wave (SAW) velocities of silicon has been carried out to construct the novel objective error function. The SAW velocities along different azimuthal angles are obtained by the V(f,z) analysis based on a lens-less line-focus acoustic microscopy. And the inversed results agree well with the reported data, which proves that this method shows high accuracy and strong reliability for the inversion of elastic constants of anisotropic materials.


Anisotropic (100) silicon SAW velocities PSO-b-SA Elastic constants 



The work presented in this paper is supported by the national Natural Science Foundation of China (NSFC, No. 61271372 & No. 51235001), and the Key Program of the NSFC (No. 11172014).


  1. 1.
    Lee, Y.-C., Kim, J.O., Achenbach, J.D.: Acoustic microscopy measurement of elastic constants and mass density. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42(2), 253–264 (1995)CrossRefGoogle Scholar
  2. 2.
    Lematre, M., Benmehrez, Y., Bourse, G., Xu, J.W., Ourak, M.: Acoustic microscopy measurement of elastic constants by using an optimization method on measured and calculated SAW velocities: effect of initial c ij values on the calculation convergence and influence of the LFI transducer parameters on the determination of the SAW velocity. NDT E Int. 35(5), 279–286 (2002)CrossRefGoogle Scholar
  3. 3.
    Lematre, M., Benmehrez, Y., Bourse, G., Xu, J.W., Ourak, M.: Determination of elastic parameters in isotropic plates by using acoustic microscopy measurements and an optimization method. NDT E Int. 35(8), 493–502 (2002)CrossRefGoogle Scholar
  4. 4.
    Yaoita, A., Adachi, T., Yamaji, A.: Determination of elastic moduli for a spherical specimen by resonant ultrasound spectroscopy. NDT E Int. 38(7), 554–560 (2005)CrossRefGoogle Scholar
  5. 5.
    Badawi, K.F., Villain, P., Goudeau, P., Renault, P.O.: Measuring thin film and multilayer elastic constants by coupling in situ tensile testing with x-ray diffraction. Appl. Phys. Lett. 80(25), 4705 (2002)CrossRefGoogle Scholar
  6. 6.
    Reddy, S.S.S., Balasubramaniam, K., Krishnamurthy, C.V., Shankar, M.: Ultrasonic goniometry immersion techniques for the measurement of elastic moduli. Compos. Struct. 67(1), 3–17 (2005)CrossRefGoogle Scholar
  7. 7.
    Wang, L.: Determination of elastic constants of composites by time-resolved acoustic microscopy. Ultrasonics 37(4), 283–289 (1999)CrossRefGoogle Scholar
  8. 8.
    Kim, J.Y., Rokhlin, S.I.: Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy. J. Acoust. Soc. Am. 126(6), 2998–3007 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, W., Achenbach, J.D.: V(z) measurement of multiple leaky wave velocities for elastic constant determination. J. Acoust. Soc. Am. 100(3), 1529–1537 (1996)CrossRefGoogle Scholar
  10. 10.
    Kushibiki, J.-I., Wei, T.-C., Ohashi, Y., Tada, A.: Ultrasonic microspectroscopy characterization of silica glass. J. Appl. Phys. 87, 3113–3121 (2000)CrossRefGoogle Scholar
  11. 11.
    Kushibiki, J.-I., Ohashi, Y., Arakawa, M., Tanaka, T.: Procedures for determining acoustical physical constants of class 6mm single crystals by ultrasonic microspectroscopy technology. J. Appl. Phys. 105(11), 114913 (2009)CrossRefGoogle Scholar
  12. 12.
    Nayfeh, A.H., Anderson, M.J.: Wave propagation in layered anisotropic media with applications to composites. J. Acoust. Soc. Am. 108(2), 471 (2000)CrossRefGoogle Scholar
  13. 13.
    Sermeus, J., Sinha, R., Vanstreels, K., Vereecken, P.M., Glorieux, C.: Determination of elastic properties of a MnO2 coating by surface acoustic wave velocity dispersion analysis. J. Appl. Phys. 116(2), 023503 (2014)CrossRefGoogle Scholar
  14. 14.
    Chung, C.H., Lee, Y.C.: An improved weighting method for inversely determining elastic constants of coating layers from dispersion curves of surface acoustic waves. Exp. Mech. 53(8), 1395–1403 (2013)CrossRefGoogle Scholar
  15. 15.
    Chang, J., Yang, Z., Xu, J.-Q.: Inverse method for the determination of elastic properties of coating layers by the surface ultrasonic waves. Journal of Zhejiang University. Science 6A(9), 945–949 (2005)MATHGoogle Scholar
  16. 16.
    Song, X., Tang, L., Lv, X., Fang, H., Gu, H.: Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J. Appl. Geophys. 84, 1–13 (2012)CrossRefGoogle Scholar
  17. 17.
    Marzani, A., De Marchi, L.: Characterization of the elastic moduli in composite plates via dispersive guided waves data and genetic algorithms. J. Intell. Mater. Syst. Struct. 24(17), 2135–2147 (2012)CrossRefGoogle Scholar
  18. 18.
    Kundu, T., Bereiterhahn, J., Hillmann, K.: Measuring elastic properties of cells by evaluation of scanning acoustic microscopy V(Z) values using simplex algorithm. Biophys. J. 59(6), 1194–1207 (1991)CrossRefGoogle Scholar
  19. 19.
    Yan, L., Cunfu, H., Guorong, S., Bin, W., Chung, C.-H., Lee, Y.-C.: Elastic properties inversion of an isotropic plate by hybrid particle swarm-based-simulated annealing optimization technique from leaky lamb wave measurements using acoustic microscopy. J. Nondestruct. Eval. 33(4), 651–662 (2014)Google Scholar
  20. 20.
    Yan, Lu, Cunfu, He, Song Guorong, Wu, Bin, Cheng-Hsien Chung, Lee, Yung-Chun: Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements on anisotropy of a (100) silicon. Ultrasonics 54, 296–304 (2014)CrossRefGoogle Scholar
  21. 21.
    K\(\imath \)ran, M.S., Gündüz, M., Baykan, Ö.K.: A novel hybrid algorithm based on particle swarm and ant colony optimization for finding the global minimum. Appl. Math. Comput. 219(4), 1515–1521 (2012)Google Scholar
  22. 22.
    Chung, C.-H., Lee, Y.-C.: Fabrication of poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers and measurements of elastic constants of thin plates[J]. NDT E Int. 43(2), 96–105 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lee, Y.-C., Ko, S.-P.: Measuring dispersion curves of acoustic waves using PVDF line-focus transducers. NDT E Int. 34(3), 191–197 (2001)CrossRefGoogle Scholar
  24. 24.
    Zou, W., Holland, S., Kim, K.Y., Sachse, W.: Wideband high-frequency line-focus PVDF transducer for materials characterization. Ultrasonics 41(3), 157–161 (2003)CrossRefGoogle Scholar
  25. 25.
    Chung, C.-H., Lee, Y.-C.: Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials. J. Nondestruct. Eval. 28(3–4), 101–110 (2009)CrossRefGoogle Scholar
  26. 26.
    Auld, B.A.: Acoustic Fields and Waves in Solid. Krieger, Huntington (1990)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guorong Song
    • 1
  • Guangfu Hong
    • 1
  • Yan Lu
    • 1
  • Yuyang Xu
    • 1
  • Dengqian Qin
    • 1
  • Bin Wu
    • 1
  • Cunfu He
    • 1
  1. 1.College of Mechanical Engineering and Applied Electronics TechnologyBeijing University of TechnologyBeijingChina

Personalised recommendations