Journal of Nondestructive Evaluation

, Volume 33, Issue 4, pp 522–534 | Cite as

Detection and Localization of Delaminations in Thin Carbon Fiber Reinforced Composites with the Ultrasonic Polar Scan

  • Mathias Kersemans
  • Arvid Martens
  • Koen Van Den Abeele
  • Joris Degrieck
  • Filip Zastavnik
  • Lincy Pyl
  • Hugo Sol
  • Wim Van Paepegem


In this paper, the hybrid compliance-stiffness matrix method for simulating wave propagation in (delaminated) multilayered media with viscoelastic anisotropy has been confronted with high-quality amplitude and phase experiments on delaminated composites, obtained using the ultrasonic polar scan setup (UPS) in transmission by considering harmonic as well as pulsed ultrasound. Results are presented for multiple thin carbon/epoxy laminates with an artificial edge delamination induced by a foil insert, showing a good agreement between experimental recording and numerical modeling. The obtained results further reveal the feasibility of the harmonic UPS to detect and even locate the depth-position of multiple delaminations in fiber reinforced composites. Considering that the harmonic UPS method does not rely on the detection of different echoes like the classical C-scan, but rather expounds the conditions for efficient stimulation of guided waves in the solid, the method is found to be highly suited for inspecting thin composite materials for the presence of delaminations.


Ultrasonic polar scan Hybrid compliance-stiffness matrix method Delaminations Thin carbon fiber reinforced plastics 



Mathias Kersemans acknowledges funding of the FWO Vlaanderen (funds for scientific research-Flanders) through Grant G012010N.


  1. 1.
    di Scalea, F.L., Green, R.E.: High-sensitivity laser-based ultrasonic C-scan system for materials inspection. Exper. Mech. 39, 329–334 (1999)CrossRefGoogle Scholar
  2. 2.
    Iyer, S.R., et al.: Ultrasonic C-scan imaging of post-tensioned concrete bridge structures for detection of corrosion and voids. Comput. Aided Civil Infrastr. Eng. 20, 79–94 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pandey, J.C., et al.: A novel method to measure cleanliness in steel using ultrasonic c-scan image analysis. Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci. 39, 439–446 (2008)Google Scholar
  4. 4.
    Maynard, J.: Resonant ultrasound spectroscopy. Phys. Today 49, 26–31 (1996)CrossRefGoogle Scholar
  5. 5.
    Ohtani, T., Ishii, Y.: Nonlinear resonant ultrasound spectroscopy (NRUS) applied to fatigue damage evaluation in a pure copper. In: Kamakura, T., Sugimoto, N. (eds.) Nonlinear Acoustics: State-of-the-Art and Perspectives vol. 1474, pp. 204–207. AIP Publishing, College Park 2012.Google Scholar
  6. 6.
    Solodov, I., et al.: Resonant ultrasound spectroscopy of defects: case study of flat-bottomed holes. J. Appl. Phys. 113, 223512 (2013)CrossRefGoogle Scholar
  7. 7.
    Van den Abeele, K.E.A., et al.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12, 17–30 (2000)CrossRefGoogle Scholar
  8. 8.
    Van den Abeele, K.E.A., et al.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12, 31–42 (2000)CrossRefGoogle Scholar
  9. 9.
    Lammering, R., et al.: Structural health monitoring of lightweight structures by use of lamb waves. In: Proceedings 2nd International Symposium on NDT in Aerospace, p. 8. 2010Google Scholar
  10. 10.
    Yashiro, S., et al.: An NDT technique for composite structures using visualized Lamb-wave propagation. Compos. Sci. Technol. 67, 3202–3208 (2007)CrossRefGoogle Scholar
  11. 11.
    Chimenti, D.E., Martin, R.W.: Nondestructive evaluation of composite laminates by leaky lamb waves. Ultrasonics 29, 13–21 (1991)CrossRefGoogle Scholar
  12. 12.
    Prasad, S.M., et al.: Structural health monitoring of composite structures using Lamb waive tomography. Smart Mater. Str. 13, N73–N79 (2004)CrossRefGoogle Scholar
  13. 13.
    Hay, T.R., et al.: A comparison of embedded sensor Lamb wave ultrasonic tomography approaches for material loss detection. Smart Mater. Str. 15, 946–951 (2006)Google Scholar
  14. 14.
    Sekhar, B.V.S., et al.: Structural health monitoring of fiber-reinforced composite plates for low-velocity impact damage using ultrasonic lamb wave tomography. Str. Health Monit. Int. J. 5, 243–253 (2006)Google Scholar
  15. 15.
    Kazys, R., Svilainis, L.: Ultrasonic detection and characterization of delaminations in thin composite plates using signal processing techniques. Ultrasonics 35, 367–383 (1997)CrossRefGoogle Scholar
  16. 16.
    Baskaran, G., et al.: Ray based model for the ultrasonic time-of-flight diffraction simulation of thin walled structure inspection. J. Press. Vessel Technol. Trans. Asme 127, 262–268 (2005)Google Scholar
  17. 17.
    Satyanarayan, L., et al.: Inverse method for detection and sizing of cracks in thin sections using a hybrid genetic algorithm based signal parametrisation. Theoret. Appl. Fract. Mech. 49, 185–198 (2008)CrossRefGoogle Scholar
  18. 18.
    Vandreumel, W.H.M., Speijer, J.L.: Non-destructive composite laminate characterization by means of ultrasonic polar-scan. Mater. Eval. 39, 922–925 (1981)Google Scholar
  19. 19.
    Degrieck, J.: Some possibilities of nondestructive characterisation of composite plates by means of ultrasonic polar scans, in Emerging technologies in nondestructive testing (ETNDT). Greece, Patras (1996) Google Scholar
  20. 20.
    Declercq, N.F., et al.: Simulations of harmonic and pulsed ultrasonic polar scans. Ndt & E Int. 39, 205–216 (Apr 2006)Google Scholar
  21. 21.
    Kersemans, M., et al.: Extraction of bulk wave characteristics from a pulsed ultrasonic polar scan. Wave Motion (2014). doi: 10.1016/j.wavemoti.2014.05.001
  22. 22.
    Declercq, N.F., et al.: Ultrasonic polar scans: numerical simulation on generally anisotropic media. Ultrasonics 45, 32–39 (2006)Google Scholar
  23. 23.
    Degrieck, J., et al.: Ultrasonic polar scans as a possible means of non-destructive testing and characterisation of composite plates. Insight 45, 196–201 (2003)Google Scholar
  24. 24.
    Kersemans, M., et al.: Quantitative measurement of the elastic properties of orthotropic composites by means of the ultrasonic polar scan method. JEC Compos. 75, 48–52 (2012)Google Scholar
  25. 25.
    Kersemans, M., et al.: Identification of the elastic properties of isotropic and orthotropic thin-plate materials with the pulsed ultrasonic polar scan. Exper. Mech 2014. doi: 10.1007/s11340-014-9861-7
  26. 26.
    Kersemans, M., et al.: Nondestructive damage assessment in fiber reinforced composites with the pulsed ultrasonic polar scan. Polym. Testing 34, 85–96 (2014)CrossRefGoogle Scholar
  27. 27.
    Kersemans, M., et al.: The pulsed ultrasonic backscatter polar scan and its applications for NDT and material characterization. Exper. Mech 2014. doi: 10.1007/s11340-013-9843-1
  28. 28.
    Kersemans, M., et al.: Ultrasonic characterization of subsurface 2D corrugation. J. Nondestruct. Eval 2014. doi: 10.1007/s10921-014-0239-7
  29. 29.
    Satyanarayan, L., et al.: Ultrasonic polar scan imaging of damaged fiber reinforced composites. Mater. Eval. 68, 733–739 (2010)Google Scholar
  30. 30.
    Kersemans, M., et al.: The Quasi-harmonic ultrasonic polar scan for material characterization: experiment and numerical modeling. In: Presented at the Proceedings of the 12th International Conference for Non-Destructive Testing 2013 (ICNDT2013), Portoroz, Slovenia, 2013.Google Scholar
  31. 31.
    Tan, E.L.: Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 119, 45–53 (2006)Google Scholar
  32. 32.
    Tan, E.L.: Stiffness matrix method with improved efficiency for elastic wave propagation in layered anisotropic media. J. Acoust. Soc. Am. 118, 3400–3403 (2005)CrossRefGoogle Scholar
  33. 33.
    Tan, E.L.: Generalized eigenproblem of hybrid matrix for Floquet wave propagation in one-dimensional phononic crystals with solids and fluids. Ultrasonics 50, 91–98 (2010)CrossRefGoogle Scholar
  34. 34.
    Lam, M., et al.: Acoustic wave transmission through piezoelectric structured materials. Ultrasonics 49, 424–431 (2009)CrossRefGoogle Scholar
  35. 35.
    Haskell, N.A.: The dispersion of surface waves on multilayered media. Seismol. Soc. Am. 43, 17–34 (1953)MathSciNetGoogle Scholar
  36. 36.
    Thomson, W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 5 (1950)CrossRefGoogle Scholar
  37. 37.
    Rokhlin, S.I., Wang, L.: Ultrasonic waves in layered anisotropic media: characterization of multidirectional composites. Int. J. Solids Str. 39, 5529–5545 (2002)CrossRefMATHGoogle Scholar
  38. 38.
    Wang, L., Rokhlin, S.I.: Ultrasonic wave interaction with multidirectional composites: modeling and experiment. J. Acoust. Soc. Am. 114, 2582–2595 (Nov 2003)Google Scholar
  39. 39.
    Kersemans, M., et al.: Pitfalls in the experimental recording of ultrasonic (Backscatter) polar scans for material characterization. Ultrasonics 2014. doi: 10.1016/j.ultras.2014.04.013

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mathias Kersemans
    • 1
  • Arvid Martens
    • 2
  • Koen Van Den Abeele
    • 2
  • Joris Degrieck
    • 1
  • Filip Zastavnik
    • 3
  • Lincy Pyl
    • 3
  • Hugo Sol
    • 3
  • Wim Van Paepegem
    • 1
  1. 1.Department of Materials Science and EngineeringGhent UniversityZwijnaardeBelgium
  2. 2.Department of PhysicsCatholic University of Leuven Campus Kortrijk- KULAKKortrijkBelgium
  3. 3.Department Mechanics of Materials and ConstructionVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations