Skip to main content
Log in

Detection and Modelling of Nonlinear Elastic Response in Damaged Composite Structures

  • Original Research
  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper the nonlinear material response of damaged composite structures under periodic excitation is experimentally and numerically investigated. In particular, the nonlinear wave propagation problem was numerically analysed through a finite element model able to predict the nonlinear interaction of acoustic/ultrasonic waves with damage precursors and micro-cracks. Such a constitutive model is based on the Landau’s semi-analytical approach to account for anharmonic effects of the medium, and is able to provide an understanding of nonlinear elastic phenomena such as the second harmonic generation. Moreover, Kelvin tensorial formulation was used to extend the wave propagation problem in orthotropic materials to the 3D Cartesian space. In this manner, the interaction of the stress waves with the 3D crack could be analysed. This numerical model was then experimentally validated on a composite plate undergone to impact loading. Good agreement between the experimental and numerical second harmonic response was found, showing that this material model can be used as a simple and useful tool for future structural diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Inh, J.-B., Chang, F.-K.: Pitch-catch active sensing method in structural health monitoring for aircraft structures. Struct. Health Monit. 7(1), 5–19 (2008)

    Article  Google Scholar 

  2. Giurgiutiu, V., Zagrai, A., Bao, J.-J.: Piezoelectric waver embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 1(1), 41–61 (2002)

    Article  Google Scholar 

  3. de Lima, W.J.-N., Hamilton, M.-F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819 (2003)

    Article  Google Scholar 

  4. Van Den Abeele, K.E.-A., Van de Velde, K., Carmeliet, J.: Inferring the degradation of pultruded composites from dynamic nonlinear resonance measurements. Polym. Compos. 22, 555–567 (2001)

    Article  Google Scholar 

  5. Nagy, P.-B., Adler, L.: Acoustic nonlinearity in plastics. In Thompson, D. O., Chimenti, D. E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. I IB, pp. 2025–2032. Plenum, New York (1992)

  6. Pecorari, C.: Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am. 113(6), 3065–3072 (2003)

    Article  Google Scholar 

  7. Cantrell, J.H.: Fundamentals and applications of non-linear ultrasonic non-destructive evaluation. In Kundu, T., (ed.) Ultrasonic Non-destructive Evaluation, vol. 6. pp. 363–434. CRC Press, Boca Raton, FL (2004)

  8. Van Den Abeele, K.E.A., Johnston, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestr. Eval. 12(1), 17–30 (2000)

    Article  Google Scholar 

  9. Ciampa, F., Meo, M.: Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis. J. Acoust. Soc. Am. 131(6), 4316–4323 (2012)

    Article  Google Scholar 

  10. Kazakov, V.-V., Sutin, A., Johnson, P.-A.: Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Appl. Phys. Lett. 81, 646–648 (2002)

    Article  Google Scholar 

  11. Bou Matar, O., Guerder, P.-Y., Li, Y., Vandewoestyne, B., Van Den Abeele, K.E.A.: A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation. J. Acoust. Soc. Am. 131(5), 3650–3663 (2012)

    Article  Google Scholar 

  12. Hirose, S., Achenback, J.-D.: Higher harmonics in the far field due to dynamic crack-face contacting. J. Acoust. Soc. Am. 93(1), 142–147 (1993)

    Article  Google Scholar 

  13. Delsanto, P., Scalerandi, M.: A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces. J. Acoust. Soc. Am. 104, 2584 (1998)

    Article  Google Scholar 

  14. Scalerandi, M., Agostini, V., Delsanto, P.-P., Van Den Abeele, K.E.A., Johnson, P.A.: Local interaction simulation approach to modelling nonclassical, nonlinear elastic behaviour in solids. J. Acoust. Soc. Am. 113(6), 3049–3059 (2003)

    Article  Google Scholar 

  15. Van Den Abeele, K.E.-A., Shubert, F., Aleshin, V., Windels, F.: Resonnat bar simulations in media with localized damage. Ultrasonics 42(1–9), 1017–1024 (2004)

    Article  Google Scholar 

  16. Vanaverbeke, S., Van Den Abeele, K.E.-A.: Two-dimensional modelling of wave propagation in materials with hysteretic nonlinearity. J. Acoust. Soc. Am. 122, 58–72 (2007)

    Article  Google Scholar 

  17. Zumpano, G., Meo, M.: A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures - A simulation study. Int. J. Solids Struct. 44, 3666–3684 (2007)

  18. Barbieri, E., Meo, M.: Time reversal DORT method applied to nonlinear elastic wave scattering. Wave Motion 47(7), 452–467 (2010)

  19. Ostrovsky, L., Johnson, P.-A.: Dynamic nonlinear elasticity in geomaterials. Rivista del Nuovo Cimento 24, 1–46 (2001)

    Google Scholar 

  20. Johnson, P.A.: The Universality of Nonclassical Nonlinearity (with Application to Nondestructive Evaluation and Ultrasonics), pp. 49–69. Springer, New York (2006)

    Book  Google Scholar 

  21. Landau, L.-D., Lifshitz, E.-M.: Theory of Elasticity. Pergamon, Oxford (1986)

    Google Scholar 

  22. Zumpano, G., Meo, M.: A new damage detection technique based on wave propagation for rails. Int. J. Solids Struct. 43(5), 1023–46 (2006)

    Article  MATH  Google Scholar 

  23. Helbig, K., Rasolofosaon, P. N.-J.: A theoretical paradigm for describing hysteresis and nonlinear elasticity in arbitrary anisotropic rocks. In Proceedings of the Ninth International Workshop on Seismic Anisotropy. Society of Exploration Geopysicistry, Tulsa (2000)

  24. Theocaris, P.-S., Sokolis, D.-P.: Spectral decomposition of the compliance fourth-rank tensor for orthotropic materials. Archiv. Appl. Mech. 70, 289–306 (2000)

    Article  MATH  Google Scholar 

  25. Ciampa, F., Barbieri, E., Meo, M.: 3D modelling of multiscale nonlinear interaction of elastic waves with three dimensional cracks. J. Acoust. Soc. Am. 135(4) (2014). doi:10.1121/1.4868476

  26. Bathe, K.-J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc., Upper Saddle River (1982)

    Google Scholar 

  27. Cook, R.-D., Malkus, D.-S., Plesha, M.-E.: Concepts and Applications of Finite Element Analysis. John Wiley, Hoboken (1989)

    MATH  Google Scholar 

  28. Donea, J.: Advanced Structural Dynamics. Applied Science Publishers, Barking (1980)

    Google Scholar 

  29. Meo, M., Zumpano, G.: Nonlinear elastic wave spectroscopy identification of impact damage on sandwich plate. Compos. Struct. 71, 469–474 (2005)

    Article  Google Scholar 

  30. Zumpano, G., Meo, M.: Damage localization using transient non-linear elastic wave spectroscopy on composite structures. Int. J. Nonlinear Mech. 43, 217–230 (2008)

    Article  Google Scholar 

  31. Van Den Abeele, K.E.-A., Sutin, A., Carmeliet, J., Johnston, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT&E Int. 34, 239–248 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciampa, F., Onder, E., Barbieri, E. et al. Detection and Modelling of Nonlinear Elastic Response in Damaged Composite Structures. J Nondestruct Eval 33, 515–521 (2014). https://doi.org/10.1007/s10921-014-0247-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0247-7

Keywords

Navigation