Journal of Nondestructive Evaluation

, Volume 33, Issue 4, pp 515–521 | Cite as

Detection and Modelling of Nonlinear Elastic Response in Damaged Composite Structures

Original Research


In this paper the nonlinear material response of damaged composite structures under periodic excitation is experimentally and numerically investigated. In particular, the nonlinear wave propagation problem was numerically analysed through a finite element model able to predict the nonlinear interaction of acoustic/ultrasonic waves with damage precursors and micro-cracks. Such a constitutive model is based on the Landau’s semi-analytical approach to account for anharmonic effects of the medium, and is able to provide an understanding of nonlinear elastic phenomena such as the second harmonic generation. Moreover, Kelvin tensorial formulation was used to extend the wave propagation problem in orthotropic materials to the 3D Cartesian space. In this manner, the interaction of the stress waves with the 3D crack could be analysed. This numerical model was then experimentally validated on a composite plate undergone to impact loading. Good agreement between the experimental and numerical second harmonic response was found, showing that this material model can be used as a simple and useful tool for future structural diagnostic applications.


Nondestructive evaluation techniques Nonlinear ultrasound Finite element method  Multiscale modelling 


  1. 1.
    Inh, J.-B., Chang, F.-K.: Pitch-catch active sensing method in structural health monitoring for aircraft structures. Struct. Health Monit. 7(1), 5–19 (2008)CrossRefGoogle Scholar
  2. 2.
    Giurgiutiu, V., Zagrai, A., Bao, J.-J.: Piezoelectric waver embedded active sensors for aging aircraft structural health monitoring. Struct. Health Monit. 1(1), 41–61 (2002)CrossRefGoogle Scholar
  3. 3.
    de Lima, W.J.-N., Hamilton, M.-F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819 (2003)CrossRefGoogle Scholar
  4. 4.
    Van Den Abeele, K.E.-A., Van de Velde, K., Carmeliet, J.: Inferring the degradation of pultruded composites from dynamic nonlinear resonance measurements. Polym. Compos. 22, 555–567 (2001)CrossRefGoogle Scholar
  5. 5.
    Nagy, P.-B., Adler, L.: Acoustic nonlinearity in plastics. In Thompson, D. O., Chimenti, D. E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. I IB, pp. 2025–2032. Plenum, New York (1992)Google Scholar
  6. 6.
    Pecorari, C.: Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am. 113(6), 3065–3072 (2003)CrossRefGoogle Scholar
  7. 7.
    Cantrell, J.H.: Fundamentals and applications of non-linear ultrasonic non-destructive evaluation. In Kundu, T., (ed.) Ultrasonic Non-destructive Evaluation, vol. 6. pp. 363–434. CRC Press, Boca Raton, FL (2004)Google Scholar
  8. 8.
    Van Den Abeele, K.E.A., Johnston, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestr. Eval. 12(1), 17–30 (2000)CrossRefGoogle Scholar
  9. 9.
    Ciampa, F., Meo, M.: Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis. J. Acoust. Soc. Am. 131(6), 4316–4323 (2012)CrossRefGoogle Scholar
  10. 10.
    Kazakov, V.-V., Sutin, A., Johnson, P.-A.: Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Appl. Phys. Lett. 81, 646–648 (2002)CrossRefGoogle Scholar
  11. 11.
    Bou Matar, O., Guerder, P.-Y., Li, Y., Vandewoestyne, B., Van Den Abeele, K.E.A.: A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation. J. Acoust. Soc. Am. 131(5), 3650–3663 (2012)CrossRefGoogle Scholar
  12. 12.
    Hirose, S., Achenback, J.-D.: Higher harmonics in the far field due to dynamic crack-face contacting. J. Acoust. Soc. Am. 93(1), 142–147 (1993)CrossRefGoogle Scholar
  13. 13.
    Delsanto, P., Scalerandi, M.: A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces. J. Acoust. Soc. Am. 104, 2584 (1998)CrossRefGoogle Scholar
  14. 14.
    Scalerandi, M., Agostini, V., Delsanto, P.-P., Van Den Abeele, K.E.A., Johnson, P.A.: Local interaction simulation approach to modelling nonclassical, nonlinear elastic behaviour in solids. J. Acoust. Soc. Am. 113(6), 3049–3059 (2003)CrossRefGoogle Scholar
  15. 15.
    Van Den Abeele, K.E.-A., Shubert, F., Aleshin, V., Windels, F.: Resonnat bar simulations in media with localized damage. Ultrasonics 42(1–9), 1017–1024 (2004)CrossRefGoogle Scholar
  16. 16.
    Vanaverbeke, S., Van Den Abeele, K.E.-A.: Two-dimensional modelling of wave propagation in materials with hysteretic nonlinearity. J. Acoust. Soc. Am. 122, 58–72 (2007)CrossRefGoogle Scholar
  17. 17.
    Zumpano, G., Meo, M.: A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures - A simulation study. Int. J. Solids Struct. 44, 3666–3684 (2007) Google Scholar
  18. 18.
    Barbieri, E., Meo, M.: Time reversal DORT method applied to nonlinear elastic wave scattering. Wave Motion 47(7), 452–467 (2010)Google Scholar
  19. 19.
    Ostrovsky, L., Johnson, P.-A.: Dynamic nonlinear elasticity in geomaterials. Rivista del Nuovo Cimento 24, 1–46 (2001)Google Scholar
  20. 20.
    Johnson, P.A.: The Universality of Nonclassical Nonlinearity (with Application to Nondestructive Evaluation and Ultrasonics), pp. 49–69. Springer, New York (2006)CrossRefGoogle Scholar
  21. 21.
    Landau, L.-D., Lifshitz, E.-M.: Theory of Elasticity. Pergamon, Oxford (1986)Google Scholar
  22. 22.
    Zumpano, G., Meo, M.: A new damage detection technique based on wave propagation for rails. Int. J. Solids Struct. 43(5), 1023–46 (2006)CrossRefMATHGoogle Scholar
  23. 23.
    Helbig, K., Rasolofosaon, P. N.-J.: A theoretical paradigm for describing hysteresis and nonlinear elasticity in arbitrary anisotropic rocks. In Proceedings of the Ninth International Workshop on Seismic Anisotropy. Society of Exploration Geopysicistry, Tulsa (2000)Google Scholar
  24. 24.
    Theocaris, P.-S., Sokolis, D.-P.: Spectral decomposition of the compliance fourth-rank tensor for orthotropic materials. Archiv. Appl. Mech. 70, 289–306 (2000)CrossRefMATHGoogle Scholar
  25. 25.
    Ciampa, F., Barbieri, E., Meo, M.: 3D modelling of multiscale nonlinear interaction of elastic waves with three dimensional cracks. J. Acoust. Soc. Am. 135(4) (2014). doi: 10.1121/1.4868476
  26. 26.
    Bathe, K.-J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc., Upper Saddle River (1982)Google Scholar
  27. 27.
    Cook, R.-D., Malkus, D.-S., Plesha, M.-E.: Concepts and Applications of Finite Element Analysis. John Wiley, Hoboken (1989)MATHGoogle Scholar
  28. 28.
    Donea, J.: Advanced Structural Dynamics. Applied Science Publishers, Barking (1980)Google Scholar
  29. 29.
    Meo, M., Zumpano, G.: Nonlinear elastic wave spectroscopy identification of impact damage on sandwich plate. Compos. Struct. 71, 469–474 (2005)CrossRefGoogle Scholar
  30. 30.
    Zumpano, G., Meo, M.: Damage localization using transient non-linear elastic wave spectroscopy on composite structures. Int. J. Nonlinear Mech. 43, 217–230 (2008)CrossRefGoogle Scholar
  31. 31.
    Van Den Abeele, K.E.-A., Sutin, A., Carmeliet, J., Johnston, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT&E Int. 34, 239–248 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Material Research Centre, Department of Mechanical EngineeringUniversity of BathBathUK
  2. 2.The School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations