Journal of Nondestructive Evaluation

, Volume 33, Issue 2, pp 252–262 | Cite as

Resonant Acoustic Nonlinearity of Defects for Highly-Efficient Nonlinear NDE

  • Igor Solodov


In this paper, the effect of local defect resonance (LDR) on the nonlinear ultrasonic responses of defects is studied and applied for enhancement of sensitivity of nonlinear NDE. Unlike the resonance of the whole specimen, the LDR provides an efficient energy pumping from the wave directly to the defect and causes an efficient generation of the higher harmonics and wave mixing even at moderate input signals. At higher levels of excitation, a combined effect of LDR and nonlinearity results in qualitatively new “nonclassical” features characteristic of the nonlinear and parametric resonances. The resonant nonlinear defects demonstrate threshold dynamics of instable vibrations, hysteresis, super- and subharmonic resonances. Under nonlinear LDR conditions nearly total input energy can be converted into higher harmonic or subharmonic vibrations of the defect. This proposes nonlinear LDR application as an extremely efficient and sensitive mode for nonlinear imaging and NDE.


Nonlinear local defect resonance  Parametric oscillations Subharmonic resonance 



The author acknowledges support of this study by EU FP-7 in the framework of ALAMSA project.


  1. 1.
    Breazeale, M.A., Philip, J.: Determination of third-order elastic constants from higher harmonic generation. In: Mason, W.P. (ed.) Physical Acoustics, v. XVII. Academic Press, New York (1965)Google Scholar
  2. 2.
    Zarembo, L.K., Krasilnikov, V.A.: Nonlinear phenomena in the propagation of elastic waves in solids. Soviet Physics Uspekhi 13, 778–797 (1971)CrossRefGoogle Scholar
  3. 3.
    Gedroitz, A.A., Krasilnikov, V.A.: Elastic waves of finite amplitude and deviations from Hooke‘s law. Sov. Phys. JETP. 16, 1122 (1963)Google Scholar
  4. 4.
    Yost, W.T., Cantrell, J.H.: Materials characterization using acoustic nonlinearity parameters and harmonic generation: engineering materials. Rev. Prog. Quant. Nondestr. Eval. 9, 1669–1676 (1990)Google Scholar
  5. 5.
    Cantrell, J.H., Yost, W.T.: Effect of precipitate coherency strains on acoustic harmonic generation. J. Appl. Phys. 81, 2957 (1997)CrossRefGoogle Scholar
  6. 6.
    Buck, O., Morris, W.M., Richardson, J.M.: Acoustic harmonic generation at unbounded interfaces and fatigue cracks. Appl. Phys. Lett. 33, 371–373 (1978)CrossRefGoogle Scholar
  7. 7.
    Len, K.S., Severin, F.M.: Experimental observation of Influence of contact nonlinearity on the reflection of bulk acoustic waves and propagation of surface acoustic waves. Sov. Phys. Acoust. 37, 610–612 (1991)Google Scholar
  8. 8.
    Solodov, I.: Ultrasonics of nonlinear contacts: propagation, reflection and NDE-applications. Ultrasonics 36, 383–390 (1998)CrossRefGoogle Scholar
  9. 9.
    Solodov, I., Krohn, N., Busse, G.: CAN: an example of nonclassical nonlinearity in solids. Ultrasonics 40, 621–625 (2002)CrossRefGoogle Scholar
  10. 10.
    Ballad, E.M., Korshak, B.A., Solodov, I., Busse, G.: Local nonlinear and parametric effects for non-bonded contacts in solids. In: Proceedings 16th ISNA, pp. 727–734, Moscow (2002)Google Scholar
  11. 11.
    Solodov, I., Korshak, B.: Instability, chaos, and memory in acoustic wave–crack interaction. Phys. Rev. Lett. 88, 014303 (2002)CrossRefGoogle Scholar
  12. 12.
    Solodov, I., Wackerl, J., Pfleiderer, K., Busse, G.: Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386–5388 (2004)CrossRefGoogle Scholar
  13. 13.
    Solodov, I., Bai, J., Bekgulyan, S., Busse, G.: A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive testing. Appl. Phys. Lett. 99, 211911 (2011)CrossRefGoogle Scholar
  14. 14.
    Solodov, I., Bai, J., Busse, G.: Resonant ultrasound spectroscopy of defects: case study of flat-bottomed holes. J. Appl. Phys. 113, 223512 (2013)CrossRefGoogle Scholar
  15. 15.
    Minorsky, N.: Nonlinear Oscillations. D. Van Nostrand Co., Princeton (1962)MATHGoogle Scholar
  16. 16.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1960)MATHGoogle Scholar
  17. 17.
    McLachlan, N.W.: Theory and applications of mathieu functions. Oxford University Press, London (1951)Google Scholar
  18. 18.
    Kneubuehl, F.K.: Oscillations and Waves. Springer, Berlin (1997)CrossRefGoogle Scholar
  19. 19.
    Van Den Abeele, K.E.-A., Carmeliet, J., TenCate, J., Johnson, P.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestr. Eval. 12, 31–42 (2000)CrossRefGoogle Scholar
  20. 20.
    Van Den Abeele, K.E.-A., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30, 1453–1464 (2000)CrossRefGoogle Scholar
  21. 21.
    Johnson, P., Sutin, A.: Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117, 124–130 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Non-Destructive Testing (IKT-ZfP), Institute of Polymer TechnologyUniversity of StuttgartStuttgartGermany

Personalised recommendations