Journal of Nondestructive Evaluation

, Volume 33, Issue 2, pp 169–177 | Cite as

Frequency Dependence of Second-Harmonic Generation in Lamb Waves



The frequency dependence of the second-harmonic generation in Lamb waves is studied theoretically and numerically in order to examine the role of phase matching for sensitive evaluation of material nonlinearity. Nonlinear Lamb wave propagation in an isotropic plate is analyzed using the perturbation technique and the modal decomposition in the neighborhood of a typical frequency satisfying the phase matching. The results show that the ratio of the amplitude of second-harmonic Lamb mode to the squared amplitude of fundamental Lamb mode grows cumulatively in a certain range of fundamental frequency for a finite propagation distance. It is also shown that the frequency for which this ratio reaches maximum is close but not equal to the phase-matching frequency when the propagation distance is finite. This feature is confirmed numerically using the finite-difference time-domain method incorporating material and geometrical nonlinearities. The fact that the amplitude of second-harmonic mode becomes high in a finite range of fundamental frequency proves robustness of the material evaluation method using second harmonics in Lamb waves.


Nonlinear ultrasonics Higher harmonic generation Lamb wave Perturbation analysis  Finite-difference time-domain method 



This work has been supported by JSPS KAKENHI Grant Numbers 24\(\cdot \)2517 and 25289005.


  1. 1.
    Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487–490 (2001). doi: 10.1016/S0142-1123(01)00162-1 CrossRefGoogle Scholar
  2. 2.
    Herrmann, J., Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W., Savage, M.F.: Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99, 124913 (2006). doi: 10.1063/1.2204807 CrossRefGoogle Scholar
  3. 3.
    Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006). doi: 10.1121/1.2221557 CrossRefGoogle Scholar
  4. 4.
    Deng, M.: Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051–3058 (1999). doi: 10.1063/1.369642 CrossRefGoogle Scholar
  5. 5.
    de Lima, W.J.N., Hamilton, M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003). doi: 10.1016/S0022-460X(02)01260-9 CrossRefGoogle Scholar
  6. 6.
    Deng, M.: Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94, 4152–4159 (2003). doi: 10.1063/1.1601312 CrossRefGoogle Scholar
  7. 7.
    Deng, M., Pei, J.: Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007). doi: 10.1063/1.2714333 CrossRefGoogle Scholar
  8. 8.
    Pruell, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 91, 231911 (2007). doi: 10.1063/1.2811954 CrossRefGoogle Scholar
  9. 9.
    Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Experimental study of thermal degradation in ferritic Cr–Ni alloy steel plates using nonlinear Lamb waves. NDT&E Int. 44, 768–774 (2011). doi: 10.1016/j.ndteint.2011.08.005 CrossRefGoogle Scholar
  10. 10.
    Bermes, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007). doi: 10.1063/1.2431467 CrossRefGoogle Scholar
  11. 11.
    Srivastava, A., Lanza di Scalea, F.: On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vib. 323, 932–943 (2009). doi: 10.1016/j.jsv.2009.01.027 CrossRefGoogle Scholar
  12. 12.
    Xiang, Y., Deng, M., Xuan, F.-Z.: Analysis of second-harmonic generation of Lamb waves using a combined method in a two-layered solid waveguide. J. Appl. Phys. 106, 024902 (2009). doi: 10.1063/1.3171942 CrossRefGoogle Scholar
  13. 13.
    Müller, M.F., Kim, J.-Y., Qu, J., Jacobs, L.J.: Characteristics of second harmonic generation of Lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127, 2141–2152 (2010). doi: 10.1121/1.3294714 CrossRefGoogle Scholar
  14. 14.
    Matsuda, N., Biwa, S.: Phase and group velocity matching for cumulative harmonic generation in Lamb waves. J. Appl. Phys. 109, 094903 (2011). doi: 10.1063/1.3569864 CrossRefGoogle Scholar
  15. 15.
    Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Cumulative second-harmonic analysis of ultrasonic Lamb waves for ageing behavior study of modified-HP austenite steel. Ultrasonics 51, 974–981 (2011). doi: 10.1016/j.ultras.2011.05.013
  16. 16.
    Deng, M., Wang, P., Lv, X.: Experimental observation of cumulative second-harmonic generation of Lamb-wave propagation in an elastic plate. J. Phys. D 38, 344–353 (2005). doi: 10.1088/0022-3727/38/2/020 Google Scholar
  17. 17.
    Deng, M., Yang, J.: Characterization of elastic anisotropy of a solid plate using nonlinear Lamb wave approach. J. Sound Vib. 308, 201–211 (2007). doi: 10.1016/j.jsv.2007.07.029
  18. 18.
    Deng, M., Xiang, Y., Liu, L.: Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys. 109, 113525 (2011). doi: 10.1063/1.3592672 CrossRefGoogle Scholar
  19. 19.
    Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Qu, J.: Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 109, 014905 (2011). doi: 10.1063/1.3527959 CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Chillara, V.K., Lissenden, C.J.: On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vib. 332, 4517–4528 (2013). doi: 10.1016/j.jsv.2013.03.021 CrossRefGoogle Scholar
  21. 21.
    Gol’dberg, Z.A.: Interaction of plane longitudinal and transverse elastic waves. Sov. Phys. Acoust. 6, 307–310 (1960)Google Scholar
  22. 22.
    Jones, G.L., Kobett, D.R.: Interaction of elastic waves in an isotropic solid. J. Acoust. Soc. Am. 35, 5–10 (1963). doi: 10.1121/1.1918405 Google Scholar
  23. 23.
    Landau, L.D., Lifshitz, E.M.: Theory of elasticity. Pergamon, New York (1959)Google Scholar
  24. 24.
    Norris, A.N.: Finite-amplitude waves in solids. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear acoustics, pp. 263–277. Academic Press, New York (1998)Google Scholar
  25. 25.
    Auld, B.A.: Acoustic field and waves in solids. Wiley, London (1973)Google Scholar
  26. 26.
    Smith, R.T., Stern, R., Stephens, R.W.B.: Third-order elastic moduli of polycrystalline metals from ultrasonic velocity measurements. J. Acoust. Soc. Am. 40, 1002–1008 (1966). doi: 10.1121/1.1910179 CrossRefGoogle Scholar
  27. 27.
    Matsuda, N., Biwa, S.: A finite-difference time-domain technique for nonlinear elastic media and its application to nonlinear Lamb wave propagation. Jpn. J. Appl. Phys. 51, 07GB14 (2012). doi: 10.1143/JJAP.51.07GB14
  28. 28.
    Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86, 1091–1106 (1996)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Aeronautics and Astronautics, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations