Journal of Nondestructive Evaluation

, Volume 33, Issue 1, pp 111–123 | Cite as

Gearbox Fault Detection Using Real Coded Genetic Algorithm and Novel Shock Response Spectrum Features Extraction

  • Sajid Hussain
  • Hossam A. Gabbar


This paper presents an intelligent fault detection method for gearbox. The method uses band-pass and wavelet filtering with real coded genetic algorithm (RCGA) and shock response spectrum (SRS) for features extraction. Vibration data acquired from gearbox are adaptively filtered through a band-pass and wavelet filters optimized by the RCGA. The filtering process unveils the fault pulses buried under huge background noise. Shock response spectrum is used to calculate the amount of shock produced by these pulses over a frequency band of interest for features extraction. The proposed method is a combination of intelligent and conventional search techniques, which shows a high performance and accurate fault detection results. The effectiveness, feasibility, and robustness of the proposed method are demonstrated on experimental data. The RCGA has successfully achieved an average speed up factor of 74 %, as compared to conventional genetic algorithms (GA) while preserving the quality of results.


Features extraction Gearbox fault detection Shock response spectrum Real coded genetic algorithm 


  1. 1.
    Yang, H., Mathew, J., Ma, L.: Fault diagnosis of rolling element bearings using basis pursuit. Mech. Syst. Signal Process. 19(2), 341–356 (2005) CrossRefGoogle Scholar
  2. 2.
    Rosmaini, A., Kamaruddin, S.: An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 63(1), 135–149 (2012) CrossRefGoogle Scholar
  3. 3.
    Wanga, H., Chen, P.: Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network. Comput. Ind. Eng. 60(4), 511–518 (2011) CrossRefGoogle Scholar
  4. 4.
    Amarnath, M., Chandramohan, S., Seetharaman, S.: Experimental investigations of surface wear assessment of spur gear teeth. J. Vib. Control 18(7), 1009–1024 (2011) CrossRefGoogle Scholar
  5. 5.
    Jiang, R., Yu, J., Makis, V.: Optimal Bayesian estimation and control scheme for gear shaft fault detection. Comput. Ind. Eng. 63(4), 754–762 (2012) CrossRefGoogle Scholar
  6. 6.
    Ozturk, H., Yesilyurt, I., Sabuncu, M.: Detection and advancement monitoring of distributed pitting failure in gears. J. Nondestruct. Eval. 29, 63–73 (2010) CrossRefGoogle Scholar
  7. 7.
    Mitoma, T., Wanga, H., Chen, P.: Fault diagnosis and condition surveillance for plant rotating machinery using partially-linearized neural network. Comput. Ind. Eng. 55(4), 783–794 (2008) CrossRefGoogle Scholar
  8. 8.
    Samuel, P.D., Pines, D.J.: A review of vibration-based techniques for helicopter transmission diagnostics. J. Sound Vib. 282, 475–508 (2005) CrossRefGoogle Scholar
  9. 9.
    Zhao, F., Chen, J., Guo, L., Li, X.: Neuro-fuzzy based condition prediction of bearing health. J. Vib. Control 15(7), 1079–1091 (2009) CrossRefMATHGoogle Scholar
  10. 10.
    Li, B., Zhang, P.-l., Tian, H., Mi, S.-s., Liu, D.-s., Ren, G.-q.: A new feature extraction and selection scheme for hybrid fault diagnosis of gearbox. Expert Syst. Appl. 38(8), 10000–10009 (2011) CrossRefGoogle Scholar
  11. 11.
    Yang, D.M., Stronach, A.F., MacConnell, P.: The application of advanced signal processing techniques to induction motor bearing condition diagnosis. Meccanica 38(2), 297–308 (2003) CrossRefMATHGoogle Scholar
  12. 12.
    Xiang, J., Zhong, Y., Chen, X., He, Z.: Crack detection in a shaft by combination of wavelet based elements and genetic algorithm. Int. J. Solids Struct. 45(17), 4782–4795 (2008) CrossRefMATHGoogle Scholar
  13. 13.
    Rafiee, J., Rafiee, M.A., Tse, P.W.: Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Syst. Appl. 37(6), 4568–4579 (2010) CrossRefGoogle Scholar
  14. 14.
    Yuan, J., He, Z., Zi, Y.: Gear fault detection using customized multi wavelet lifting schemes. Mech. Syst. Signal Process. 24(5), 1509–1528 (2010) CrossRefGoogle Scholar
  15. 15.
    Li, D.Z., Wang, W.: An enhanced GA technique for system training and prognostics. Adv. Eng. Softw. 42(7), 452–462 (2011) CrossRefMATHGoogle Scholar
  16. 16.
    Ciornei, I., Kyriakides, E.: Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 42(1), 234–245 (2012) CrossRefGoogle Scholar
  17. 17.
    Zhang, Y.X., Randall, R.B.: Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram. Mech. Syst. Signal Process. 23(5), 1509–1517 (2009) CrossRefGoogle Scholar
  18. 18.
    Vakil-Baghmisheh, M., Peimani, M., Sadeghi, M., Ettefagh, M.: Crack detection in beam-like structures using genetic algorithms. Appl. Soft Comput. 8(2), 1150–1160 (2008) CrossRefGoogle Scholar
  19. 19.
    He, R., Hwang, S.: Damage detection by an adaptive real-parameter simulated annealing genetic algorithm. Comput. Struct. 84(31–32), 2231–2243 (2006) CrossRefGoogle Scholar
  20. 20.
    Vassilios Kappatos, A., Dermatas, S.E.: Feature extraction for crack detection in rain conditions. J. Nondestruct. Eval. 26, 57–70 (2007) CrossRefGoogle Scholar
  21. 21.
    Zhu, Z.K., Yan, R., Luo, L., Feng, Z.H., Kong, F.R.: Detection of signal transients based on wavelet and statistics for machine fault diagnosis. Mech. Syst. Signal Process. 23(4), 1076–1097 (2009) CrossRefGoogle Scholar
  22. 22.
    Firpi, H., Vachtsevanos, G.: Genetically programmed-based artificial features extraction applied to fault detection. Eng. Appl. Artif. Intell. 21(4), 558–568 (2008) CrossRefGoogle Scholar
  23. 23.
    Zhao, Q., Xu, Z.: Design of a novel knowledge-based fault detection and isolation scheme. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 1089–1095 (2004) CrossRefGoogle Scholar
  24. 24.
    Öztürk, H., Sabuncu, M., Yesilyurt, I.: Early detection of pitting damage in gears using mean frequency of scalogram. J. Vib. Control 14(4), 469–484 (2008) CrossRefMATHGoogle Scholar
  25. 25.
    Lin, J., Zuo, M.J.: Gearbox fault diagnosis using adaptive wavelet filter. Mech. Syst. Signal Process. 17(6), 1259–1269 (2003) CrossRefGoogle Scholar
  26. 26.
    Feiring, B.R.: Penalty function techniques: a tutorial. Comput. Ind. Eng. 9(4), 307–326 (1985) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Antoni, J.: Fast computation of the kurtogram for the detection of transient faults. J. Mech. Syst. Signal Process. 21(1), 108–124 (2007) CrossRefGoogle Scholar
  28. 28.
    Hussain, S., Gabbar, H.A.: A novel method for real time gear fault detection based on pulse shape analysis. Mech. Syst. Signal Process. 25(4), 1287–1298 (2011) CrossRefGoogle Scholar
  29. 29.
    Rardin, R.L.: Optimization in Operations Research, pp. 727–735. Prentice Hall, New Jersey (1998) Google Scholar
  30. 30.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975) Google Scholar
  31. 31.
    Smallwood, D.O.: An improved recursive formula for calculating shock response spectra. Shock Vib. Bull. 51 (1981) Google Scholar
  32. 32.
    Link, H., LaCava, W., van Dam, J., McNiff, B., Sheng, S., Wallen, R., McDade, M., Lambert, S., Butterfield, S., Oyague, F.: Gearbox reliability collaborative project report: findings from phase 1 and phase 2 testing. NREL/TP–5000–NREL/TP-51885 (2011) Google Scholar
  33. 33.
    Oyague, F., Sheng, S., Butterfield, S.: NREL gearbox reliability collaborative analysis round robin. In: Wind Power Conference (2009) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of TechnologyOshawaCanada
  2. 2.Faculty of Energy Systems and Nuclear ScienceUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations