Journal of Nondestructive Evaluation

, Volume 33, Issue 1, pp 34–42 | Cite as

Inversion of Functional Graded Materials Elastic Properties from Ultrasonic Lamb Wave Phase Velocity Data Using Genetic Algorithm

  • Kaihua Sun
  • Ke Hong
  • Ling Yuan
  • Zhonghua Shen
  • Xiaowu Ni


An inverse method based on genetic algorithm (GA) is presented to determine the elastic properties of functional graded materials (FGMs) plate from lamb wave phase velocity data. The Legendre polynomial expansion method is used as a forward solver to calculate the phase velocity dispersion curves of lamb wave in FGMs plate, which has a distribution function to express the inhomogeneity of materials’ elastic properties. The properties of FGMs plate can be characterized by minimizing the standard deviations between the actual and calculated phase velocities of lamb waves. By using GA, the elastic parameters of FGMs plates with three different distribution functions are inversed, and the convergence and deviations of the inversion are also discussed. The investigation shows that this inverse method is efficient and accurate for determining the materials parameters of FGMs and the deviation can be controlled below 5 %.


FGMs Legendre polynomial expansion method Inversion Phase velocity dispersion curve Genetic algorithm 



Financial supports of this work by the National Natural Science Foundation of Jiangsu province under Grant No. BK2011695, the National Natural Science Foundation of China under Grant No. 61108013, the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103219120040) and the Fundamental Research Funds for the Central Universities (No. NUST2012ZDJH007).


  1. 1.
    Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic, Hingham (1999) CrossRefGoogle Scholar
  2. 2.
    Suresh, S., Giannakopoulos, A.E., Alcala, J.: Spherical indentation of compositionally graded materials: theory and experiments. Acta Mater. 45(4), 1307–1321 (1997) CrossRefGoogle Scholar
  3. 3.
    Dutton, B., Clough, A.R., Rosli, M.H., Edwards, R.S.: Non-contact ultrasonic detection of angled surface defects. Nondestruct. Test. Eval. Int. 44(4), 353–360 (2011) Google Scholar
  4. 4.
    Ni, C.Y., Dong, L.M., Shen, Z.H., Ni, X.W.: The experimental study of fatigue crack detection using scanning laser point source technique. Opt. Laser Technol. 43(8), 1391–1397 (2011) CrossRefGoogle Scholar
  5. 5.
    Sun, K.H., Yuan, L., Shen, Z.H., Ni, X.W.: Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method. Proc. SPIE 8192, 81922T-1 (2011) CrossRefGoogle Scholar
  6. 6.
    Jia, J., Shen, Z.H., Yuan, L., Ni, X.W.: Experimental and numerical study of mode transformation and energy attenuation of wedge waves generated by laser ultrasound technique. Jpn. J. Appl. Phys. 51(2), 022703 (2012) Google Scholar
  7. 7.
    Balasubramaniam, K., Rao, N.S.: Inversion of composite material elastic constants from ultrasonic bulk wave phase velocity data using genetic algorithms. Composites, Part B, Eng. 29(2), 171–180 (1998) CrossRefGoogle Scholar
  8. 8.
    Vishnuvardhan, J., Krishnamurthy, C.V., Balasubramaniam, K.: Determination of material symmetries from ultrasonic velocity measurements: a genetic algorithm based blind inversion method. Compos. Sci. Technol. 68(3–4), 862–871 (2008) CrossRefGoogle Scholar
  9. 9.
    Castagnede, B., Kim, K.Y., Sachse, W.: Determination of the elastic constants of anisotropic materials using laser-generated ultrasonic signals. J. Appl. Phys. 70(1), 150–157 (1991) CrossRefGoogle Scholar
  10. 10.
    Han, X., Xu, D., Liu, G.R.: A computational inverse technique for material characterization of a functionally graded cylinder using a progressive neural network. Neurocomputing 51, 341–360 (2003) CrossRefGoogle Scholar
  11. 11.
    Wu, T.T., Liu, Y.H.: Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves. Ultrasonics 37(1), 23–30 (1999) CrossRefGoogle Scholar
  12. 12.
    Liu, G.R., Han, X., Lam, K.Y.: A combined genetic algorithm and nonlinear least squares method for material characterization using elastic waves. Comput. Methods Appl. Mech. Eng. 192(17–18), 1909–1921 (2002) CrossRefGoogle Scholar
  13. 13.
    Xu, B.Q., Shen, Z.H., Ni, X.W.: Determination of elastic properties of a film-substrate system by using the neural networks. Appl. Phys. Lett. 85(25), 6161–6163 (2004) CrossRefGoogle Scholar
  14. 14.
    Yuan, L., Shen, Z.H., Ni, X.W.: Numerical simulation of laser-generated ultrasonic waves in steel with gradient changes of near-surface elastic property. Opt. Laser Technol. 40(2), 325–329 (2008) CrossRefGoogle Scholar
  15. 15.
    Hurley, D.H., Spicer, J.B.: Line source representation for laser-generated ultrasound in an elastic transversely isotropic half-space. J. Acoust. Soc. Am. 116(5), 2914–2920 (2004) CrossRefGoogle Scholar
  16. 16.
    Cai, C., Liu, G.R., Lam, K.Y.: A transfer matrix approach for acoustic analysis of a multilayered active acoustic coating. J. Sound Vib. 248(1), 71–89 (2001) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kim, Y., Hunt, W.D.: Acoustic fields and velocities for surface acoustic wave propagation in multilayered structures: an extension of the Laguerre polynomial approach. J. Appl. Phys. 68(10), 4993–4997 (1990) CrossRefGoogle Scholar
  18. 18.
    Lefebvre, J.E., Zhang, V., Gazalet, J.: Legendre polynomial approach for modeling free-ultrasonic waves in multilayered plates. J. Appl. Phys. 85(7), 3419–3427 (1999) CrossRefGoogle Scholar
  19. 19.
    Datta, S., Hunsinger, B.J.: First-order reflection coefficient of surface acoustic waves from thin-strip overlays. J. Appl. Phys. 50(9), 5661–5665 (1979) CrossRefGoogle Scholar
  20. 20.
    Elmaimouni, L., Lefebvre, J.E., Zhang, V., Gryba, T.: Guided waves in radially graded cylinders: a polynomial approach. Nondestruct. Test. Eval. Int. 38(5), 344–353 (2005) Google Scholar
  21. 21.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989) MATHGoogle Scholar
  22. 22.
    Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Berlin (2007) Google Scholar
  23. 23.
    Gao, W.M., Glorieux, C., Thoen, J.: Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate. Int. J. Eng. Sci. 41, 219–228 (2003) CrossRefGoogle Scholar
  24. 24.
    Lee, Y.C., Cheng, S.W.: Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(3), 830–837 (2001) CrossRefGoogle Scholar
  25. 25.
    Hong, K., Yuan, L., Shen, Z.H.: Analysis of Lamb waves propagation in functional gradient materials using Taylor expansion method. Acta Phys. Sin. 60(10), 104303 (2011) Google Scholar
  26. 26.
    Darrell, W.: A genetic algorithm tutorial. Stat. Comput. 4, 65–85 (1994) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kaihua Sun
    • 1
  • Ke Hong
    • 1
  • Ling Yuan
    • 1
  • Zhonghua Shen
    • 1
  • Xiaowu Ni
    • 1
  1. 1.School of ScienceNanjing University of Science and TechnologyNanjingChina

Personalised recommendations