Journal of Nondestructive Evaluation

, Volume 33, Issue 1, pp 23–33 | Cite as

Local Acoustic Resonance Spectroscopy (LARS) for Glass Fiber-Reinforced Polymer Applications



Polymer composite materials combine high strength with low weight. This makes composites an interesting material for different industrial applications. In the aerospace industry, the use of composites is already common practice, while in the automotive industry carbon fiber-reinforced polymers have begun to replace metal in some parts. However, the nature of damage within composites is different from that within metal parts, so common techniques available for damage detection in metal may not work for composites thus new techniques for damage detection need to be developed. A technique that is often used but requires experienced technicians is the so-called coin tapping test where changes in sound waves generated by the impact of a hard object are detected. LARS is a (new) technique that avoids the errors due to variations in operator technique by using a instrumented impact device to generate controlled sound signals. If a hammer is used as an impact device it could be equipped with a dynamic force sensor to measure and record the excitation force of the sound signal. The force and the excited sound signal are related to the contact stiffness between the hammer and the test part. Flaws such as voids and delaminations affect the contact stiffness and can be detected under certain conditions. To the knowledge of the authors, no such technique has appeared in the literature. In regard to the frequencies, LARS is operated at much shorter wavelengths than in vibration analysis techniques (making it “local”) and at much larger wavelengths than in ultrasound. The material is excited to frequencies that are recorded by a microphone. To demonstrate the method, it is applied to the inspection of wind turbine rotor blades.


Tap test Local resonance Plastic composites Wind turbine blades 



The authors thank the IZFP and the IMA Dresden for the possibility for conducting investigations of their test blade, Mr. Otto Lutz for the results of his inspection of the test blade and Mr. Sean Dugan for the kind revision of the text.


  1. 1.
    Aderhold, J., Meinlschmidt, P., Brocke, H., Jüngert, A.: Rotor blade defect detection using thermal and ultrasonic waves. In: Proc. DEWI GmbH (Ed.): DEWEK 2008, Bremen (2008) Google Scholar
  2. 2.
    Bergland, G.D.: A guided tour of the fast Fourier transform. IEEE Spectr. 6, 41–52 (1969) CrossRefGoogle Scholar
  3. 3.
    Brownjohn, J.M.W., Magalhaes, F., Caetano, E., Cunha, A.: Ambient vibration re-testing and operational modal analysis of the Humber bridge. Eng. Struct. 32(8), 2003–2018 (2010) CrossRefGoogle Scholar
  4. 4.
    Cawley, P., Adams, R.D.: The mechanics of the coin-tap method of non-destructive testing. J. Sound Vib. 122, 299–316 (1988) CrossRefGoogle Scholar
  5. 5.
    Chladni, E.F.F.: Die Akustik. Breitkopf und Härtel, Leipzig (1802) Google Scholar
  6. 6.
    Ciang, C.C., Lee, J.-R., Bang, H.-J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci. Technol. 19, 1–20 (2008) CrossRefGoogle Scholar
  7. 7.
    Eslami, S., Taheri-Behrooz, F., Taheri, F.: Effects of aging temperature on moisture absorption of perforated GFRP. Adv. Mater. Sci. Eng. 7, 1–7 (2012) Google Scholar
  8. 8.
    Georgeson, G., Lea, S., Hansen, J.: Electronic tap hammer for composite damage assessment. In: NDE of Aging Aircr., Airpt. and Aerosp. Hardw.. Proc. SPIE, vol. 2945, p. 328 (1996) Google Scholar
  9. 9.
    Gieske, J.H., Rumsey, M.A.: Nondestructive evaluation (NDE) of composite-to-metal bond interface of a wind turbine blade using an acousto-ultrasonic technique. Sandia report (1996) Google Scholar
  10. 10.
    Grosse, C., Wiggenhauser, H., Algernon, D., Schubert, F., Beutel, R.: Impact-Echo-Stand der Technik und Anwendungen des Verfahrens, Hefte des Deutschen Ausschusses für Stahlbeton DAfStb, vol. 565, pp. 17–24. Springer, Berlin (2006) Google Scholar
  11. 11.
    Haritos, N., Owen, J.S.: The use of vibration data for damage detection in bridges: a comparison of system identification and pattern recognition approaches. Struct. Health Monit. 3(2), 141–163 (2004) CrossRefGoogle Scholar
  12. 12.
    Hertlin, I.: Acoustic Resonance Analysis. NDT Compact and Understandable, vol. 5. Castell, Wuppertal (2003) Google Scholar
  13. 13.
    Hertz, H.: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881) Google Scholar
  14. 14.
    Jüngert, A.: Untersuchung von GFK-Bauteilen mit akustischen Verfahren am Beispiel der Rotorblätter von Windenergieanlagen. Dissertation, Universität Stuttgart, Stuttgart (2010) Google Scholar
  15. 15.
    Jüngert, A., Grosse, C.U.: Inspection techniques for wind turbine blades using ultrasound and sound waves. In: Intern. Symp. Non-Destructive Testing in Civil Engineering (NDT-CE), pp. 625–632 (2009). ISBN 978-2-7208-2542-5 Google Scholar
  16. 16.
    Kim, S.J.: Damage detection in composite laminates using coin-tap method. In: Proc. Acoustics ’08, Paris, pp. 405–409 (2008) Google Scholar
  17. 17.
    Kristensen, O.J.D., McGugan, M., Sendrup, P., Rheinländer, J., Rusborg, J., Hansen, A.M., et al.: Fundamentals for Remote Structural Health Monitoring of Wind Turbine Blades—a Preproject. Annex E-Full-Scale Test of Wind Turbine Blade, Using Sensors and NDT. RISO National Laboratory. Roskilde, Denmark (2002) Google Scholar
  18. 18.
    Mandell, J.F., Cairns, D.S., Samborsky, D.D., Morehead, R.B., Haugen, D.J.: Prediction of delamination in wind turbine blade structural details. J. Sol. Energy Eng. 125, 522–530 (2003) CrossRefGoogle Scholar
  19. 19.
    Mandell, J.F., Samborsky, D.D., Wang, L.: New fatigue data for wind turbine blade materials. J. Sol. Energy Eng. 125, 506–514 (2003) CrossRefGoogle Scholar
  20. 20.
    Mattei, C., Dahren, M.: Advanced ultrasonic NDT techniques for wind turbine blade inspection. JEC Compos. Mag. 46, 58–60 (2009) Google Scholar
  21. 21.
    Maw, N., Barber, J.R., Fawcett, J.N.: The oblique impact of elastic spheres. Wear 38, 101–114 (1976) CrossRefGoogle Scholar
  22. 22.
    Mitsuhashi, K., Jyomuta, C., Oka, F., Nishikawa, H.: Method and apparatus for impact-type inspection of structures. Patent publication number: 05,048,320 (1989) Google Scholar
  23. 23.
    Nijssen, R.P.L.: Fatigue life prediction and strength degradation of wind turbine rotor blade composites. Sandia, Montana State University (SAND2006-7810P) (2007) Google Scholar
  24. 24.
    Peeters, G.: A large set of audio features for sound description (similarity and classification) in the CUIDADO project. Cuidado project report, IRCAM, Paris (2004) Google Scholar
  25. 25.
    Raisutis, R., Jasiuniene, E., Zukauskas, E.: Ultrasonic NDT of wind turbine blades using guided waves. Ultrasound 63(1), 7 (2008) Google Scholar
  26. 26.
    Rayleigh, J., Lord, W.S.: On the calculation of Chladni’s figures for a square plate. Philos. Mag. Ser. 6 22(128), 225–229 (1911) CrossRefGoogle Scholar
  27. 27.
    Schulze, E., Schubert, L., Frankenstein, B.: Monitoring of a wind turbine rotor blade with acousto ultrasonics and acoustic emission techniques during a full scale fatigue test. In: Proc. of the 5th European Workshop on Structural Health Monitoring, Sorrento, Naples, Italy, 28.6.–4.7.2010, pp. 1229–1234 (2010) Google Scholar
  28. 28.
    Shi, X., Polycarpou, A.A.: Measurement and modeling of normal contact stiffness and contact damping at the meso scale. J. Vib. Acoust. 127, 52–60 (2005) CrossRefGoogle Scholar
  29. 29.
    Sutherland, H.J., Beattie, A., Hansche, B.: The application of non-destructive techniques to the testing of a wind turbine blade. Sandia report (1994) Google Scholar
  30. 30.
    Wu, H., Siegel, M.: Correlation of accelerometer and microphone data in the “coin tap test”. IEEE Trans. Instrum. Meas. 49(3) (2000) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Anne Jüngert
    • 1
  • Christian Große
    • 2
  • Markus Krüger
    • 1
  1. 1.MPA Universität StuttgartStuttgartGermany
  2. 2.Technische Universität MünchenMünchenGermany

Personalised recommendations