Journal of Nondestructive Evaluation

, Volume 33, Issue 1, pp 1–11 | Cite as

Novel Coupled Electric Field Method for Defect Characterization in Eddy Current Non-destructive Testing Systems

  • T. Bouchala
  • B. Abdelhadi
  • A. Benoudjit


This article presents a defect modeling in eddy current non-destructive testing systems by using a new developed method called coupled electric field. It permits to improve qualitatively several models developed so far by many authors using coupled circuit methods that consider the defect only as loss of material. However, a defect can occur with a finite conductivity such as impurity, small burns and micro-solder. For this reason, this investigation consists of extending the coupled circuit method to the modeling of this kind of defects. The proposed approach consists of firstly considering the defect as an electric conductive volume and secondly changing the state variable presenting the electric current by the electric field one. This procedure permits expressing explicitly the impedance variation caused by the presence of an axi-symmetrical defect according to its characteristics. The comparison between the impedance variations calculated using finite elements method and the proposed one demonstrates a very good concordance. After this validation, the study covers also the influence of the defect shape and position on encircling probe impedance. This method is interesting since it permits a fully characterization of this kind of defects and facilitates the inversion process. Moreover, using a 3D finite element observation, this fast tool of simulation can be adapted for a fast phenomenological modeling of asymmetrical configurations.


Coupled electric field Finite conductivity Defect characterization Eddy current Non destructive testing Inverse problem 


  1. 1.
    Javier, G.-M., Jaime, G.-G., Ernesto, V.-S.: Non-destructive techniques based on eddy current testing. Sens. J. 2525–2565 (2011) Google Scholar
  2. 2.
    Lunin, V.P.: Phenomenological and algorithmic method for the solution of inverse problem of electromagnetic testing. Russ. J. Nondestruct. Test. 42, 353–362 (2006) CrossRefGoogle Scholar
  3. 3.
    Maouche, B., Feliachi, M.: A half analytical formulation for the impedance variation in axisymmetrical modeling of eddy current non destructive testing. Eur. Phys. J. Appl. Phys. 33, 59–67 (2006) CrossRefGoogle Scholar
  4. 4.
    Maouche, B., Feliachi, M.: Analyse de l’effet des Courants induits sur l’impédance d’un système électromagnétique alimenté en tension BF ou HF. Utilisation de la méthode des circuits couplés. J. Phys. III 10, 1967–1973 (1997) Google Scholar
  5. 5.
    Maouche, B., Rezak, A., Feliachi, M.: Semi analytical calculation of the impedance of differential sensor for eddy current non destructive testing. In: NDT & E International, vol. 42, pp. 573–580. Elsevier, Amsterdam (2009) Google Scholar
  6. 6.
    Bouzidi, A., Maouche, B., Feliachi, M., Berthiau, G.: Pulsed eddy current non-destructive evaluation based on coupled electromagnetic quantities method. Eur. Phys. J. Appl. Phys. 57, 10601 (2012) (9 pages) CrossRefGoogle Scholar
  7. 7.
    Amrane, S., Latreche, M.E.H., Feliachi, M.: Coupled circuits model combined with deterministic and stochastic algorithms for the inductor design. Int. J. Appl. Electromagn. Mech. 32, 195–206 (2010) Google Scholar
  8. 8.
    Mouhallebi, H., Bouali, F., Feliachi, M.: Use of half analytical method for detection of defects in diet pulses. In: The 15th International Workshop on Electromagnetic Non Destructive Evaluation, ENDE 2010, Szczecin, Poland (2010) Google Scholar
  9. 9.
    Zerguini, S., Maouche, B., Latreche, M., Feliachi, M.: A coupled fictitious electric circuit’s method for impedance of a sensor with ferromagnetic core calculation. Application to eddy currents non destructive testing. Eur. Phys. J. Appl. Phys. 48, 31202 (2009) (6 pages) CrossRefGoogle Scholar
  10. 10.
    Doirat, V.: Contribution à la modélisation des systèmes de contrôles non destructifs par Courants de Foucault, application à la caractérisation physique et dimensionnelle de matériaux de l’aéronautique. Doctorate Thesis, Nantes, France (2007) Google Scholar
  11. 11.
    Theodoulidis, T.P., Bowler, J.R.: Bobbin coil signal variation due to an axisymmetric circumferential groove in a tube. AIP Conf. Proc. 1096, 1922–1929 (2008) Google Scholar
  12. 12.
    Lemistre, M.B., Balageas, D.L.: Hybrid electromagnetic method for NDE of GFRP and CFRP composites materials. In: Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems IV, vol. 5768, San Diego (2005) Google Scholar
  13. 13.
    Yamada, S.: High-spatial-resolution magnetic-field measurement by giant magnetoresistance sensor—applications to nondestructive evaluation and biomedical engineering. Int. J. Smart Sens. Intell. Syst. 1(1) (2008) Google Scholar
  14. 14.
    Shiraishi, K., Izumida, M., Murakami, K.: Estimation of depth and volume for defects by eddy current testing. Electr. Eng. Jpn. 127(4), 29–38 (1999) CrossRefGoogle Scholar
  15. 15.
    Bernieri, A., Ferrigno, L., Molinara, M.: Crack shape reconstruction in eddy current testing using machine learning systems for regression. IEEE Trans. Instrum. Meas. 57(9) (2008) Google Scholar
  16. 16.
    Van Bladel, J.: Electromagnetic Field. Wiley-IEEE Press, New York (2007) CrossRefGoogle Scholar
  17. 17.
    Yating, Y., Pingan, D., Luchuan, X.: Coil impedance calculation of an eddy current sensor by the finite element method. Russ. J. Nondestruct. Test. 44(4), 296–302 (2008) CrossRefGoogle Scholar
  18. 18.
    Cacciola, G., Calcagno, S., Megali, G., Pellican, D., Versaci, M., Morabito, F.C.: Eddy current modelling in composite materials. PIERS Online 5, 591–595 (2009) Google Scholar
  19. 19.
    Hillmann, S., Heuer, H., Baron, H.-U., Bamberg, J., Yashan, A., Meyendorf, N.: Near surface residual stress-profiling with high frequency eddy current conductivity measurement. In: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, vol. 1096, pp. 1349–1355 (2008) Google Scholar
  20. 20.
    Yu, F., Peter, B.: Simple analytical approximations for eddy current profiling of the near-surface residual stress in shot-peened metals. J. Appl. Phys. 96, 1257–1266 (2004) CrossRefGoogle Scholar
  21. 21.
    Shao, K.R., Youguang, G., Lavers, J.D.: Multiresolution analysis for reconstruction of conductivity profiles in eddy current nondestructive evaluation using probe impedance data. IEEE Trans. Magn. 40, 2101–2103 (2004) CrossRefGoogle Scholar
  22. 22.
    Yokose, Y., Cingoski, V., Yamashita, H.: Genetic algorithms with assistant chromosomes for inverse shape optimization of electromagnetic devices. IEEE Trans. Magn. 36, 1052–1056 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentEl-Hadj Lakhdar UniversityBatnaAlgeria
  2. 2.Laboratory of Electric Traction Systems—Batna (LSTE—Batna)BatnaAlgeria
  3. 3.Electrical Engineering DepartmentKasdi Merbah UniversityOuarglaAlgeria

Personalised recommendations