Journal of Nondestructive Evaluation

, Volume 32, Issue 3, pp 315–324 | Cite as

Nondestructive Porosity Assessment of CFRP Composites with Spectral Analysis of Backscattered Laser-Induced Ultrasonic Pulses

  • A. A. Karabutov
  • N. B. Podymova


The laser-ultrasonic method for nondestructive quantitative local porosity assessment for CFRP composites is proposed and realized experimentally for only one available flat surface of a specimen or a product. This method combines the laser thermoelastic generation and the high-sensitivity piezoelectric detection of broadband pulses of longitudinal ultrasonic waves and does not require the detection of the backwall echo ultrasonic signal. The generation and the detection of ultrasonic pulses is carried out with the specially designed laser-ultrasonic transducer, which allows one to obtain both the temporal profile and the frequency spectrum of a part of the ultrasonic signal backscattered by gas voids in a composite specimen. The frequency spectrum of backscattered ultrasonic pulses is analyzed for three sets of CFRP specimens with different epoxy matrix fractions and porosity. The empirical relation between porosity of CFRP specimens and the spectral power (structural noise power) of ultrasonic signals backscattered by voids is obtained for porosity values up to 0.15. This relation allows one to evaluate the local porosity from measured structural noise power both for CFRP specimens and products fabricated from the same composite material. The proposed laser-ultrasonic setup demonstrates a basis for a system of CFRP porosity assessment in field conditions. It can be very useful especially for nondestructive detection of structural changes of composite materials that will allow evaluation of products during their life time.


CFRP composites Porosity Laser ultrasonics Ultrasonic backscattering Phase velocity Longitudinal ultrasonic waves 


  1. 1.
    Kelly, A., Zweben, C. (eds.): Comprehensive Composite Materials. Elsevier, Amsterdam (2000) Google Scholar
  2. 2.
    Adams, R.D., Cawley, P.: A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT Int. 21, 208–222 (1988) CrossRefGoogle Scholar
  3. 3.
    Achenbach, J.D. (ed.): Evaluation of Materials and Structures by Quantitative Ultrasonics. Springer, Wien and New York (1993) Google Scholar
  4. 4.
    Achenbach, J.D.: Quantitative nondestructive evaluation. Int. J. Solids Struct. 37, 13–27 (2000) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Rokhlin, S.I., Chimenti, D.E., Nagy, P.B.: Physical Ultrasonics of Composites. Oxford University Press, Oxford (2011) Google Scholar
  6. 6.
    Stone, D.E.W., Clarke, B.: Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Nondestruct. Test. 8, 137–145 (1975) CrossRefGoogle Scholar
  7. 7.
    Martin, B.G.: Ultrasonic wave propagation in fiber-reinforced solids containing voids. J. Appl. Phys. 48, 3368–3373 (1977) CrossRefGoogle Scholar
  8. 8.
    Reynolds, W.N., Wilkinson, S.J.: The analysis of fibre-reinforced porous composite materials by the measurement of ultrasonic wave velocities. Ultrasonics 16, 159–163 (1978) CrossRefGoogle Scholar
  9. 9.
    Hale, J.M., Ashton, J.N.: Ultrasonic attenuation in voided fibre-reinforced plastics. NDT Int. 21, 321–326 (1988) CrossRefGoogle Scholar
  10. 10.
    Daniel, I.M., Wooh, S.C., Komsky, I.: Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements. J. Nondestruct. Eval. 11, 1–8 (1992) CrossRefGoogle Scholar
  11. 11.
    Jeong, H., Hsu, D.K.: Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics 33, 195–203 (1995) CrossRefGoogle Scholar
  12. 12.
    Takatsubo, J., Urabe, K., Tsuda, H., Toyama, N., Wang, B.: Experimental and theoretical investigation of ultrasound propagation in materials containing void inclusions. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 1083–1090. American Institute of Physics, New York (2004) Google Scholar
  13. 13.
    Stone, M.A.: Evaluation of oven-cured, solid carbon/epoxy composites with various porosity levels. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 28. AIP Conference Proceedings, vol. 1096, pp. 1025–1032. American Institute of Physics, New York (2009) Google Scholar
  14. 14.
    Lin, L., Chen, J., Zhang, X., Li, X.: A novel 2-D random void model and its application in ultrasonically determined void content for composite materials. NDT E Int. 44, 254–260 (2011) CrossRefGoogle Scholar
  15. 15.
    Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic characterization of microstructure in powder metal alloy. In: Analytical Ultrasonics in Materials Research and Testing. NASA Conf. Publ., vol. 2383, pp. 31–49 (1984) Google Scholar
  16. 16.
    Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic microstructural noise parameters in a powder metal alloy. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 3A, pp. 57–63. Plenum, New York (1984) CrossRefGoogle Scholar
  17. 17.
    Kogan, V.G., Hsu, D.K., Rose, J.H.: Characterization of flaws using the zeroes of the real and imaginary parts of the ultrasonic scattering amplitude. J. Nondestruct. Eval. 5, 57–68 (1985) CrossRefGoogle Scholar
  18. 18.
    Vary, A.: Material property characterization. In: Moore, P.O. (ed.) Nondestructive Testing Handbook, Ultrasonic Testing, 3rd edn. vol. 7, pp. 365–431. ASTM, Columbus (2007) Google Scholar
  19. 19.
    Truell, R., Elbaum, C., Chick, B.: Ultrasonic Methods in Solid State Physics. Academic Press, New York (1969) Google Scholar
  20. 20.
    Desilets, C.S., Fraser, J.D., Kino, G.S.: The design of efficient broad-band piezoelectric transducers. IEEE Trans. Sonics Ultrason. 25, 115–125 (1978) CrossRefGoogle Scholar
  21. 21.
    Foster, F.S., Ryan, L.K., Turnbull, D.H.: Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20–80 MHz) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 446–453 (1991) CrossRefGoogle Scholar
  22. 22.
    Chung, C.-H., Lee, Y.-C.: Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials. J. Nondestruct. Eval. 28, 101–110 (2009) CrossRefGoogle Scholar
  23. 23.
    Scruby, C.B., Drain, L.E.: Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol (1990) Google Scholar
  24. 24.
    Gusev, V.E., Karabutov, A.A.: Laser Optoacoustics. American Institute of Physics, New York (1993) Google Scholar
  25. 25.
    Karabutov, A.A., Matrosov, M.P., Podymova, N.B., Pyzh, V.A.: Acoustic pulse spectroscopy using a laser sound source. Sov. Phys. Acoust. 37, 157–163 (1991) Google Scholar
  26. 26.
    Karabutov, A.A., Podymova, N.B.: Nondestructive evaluation of fatigue changes of composite structure by laser ultrasonic method. Mech. Compos. Mater. 31, 198–203 (1995) CrossRefGoogle Scholar
  27. 27.
    Tittmann, B.R., Linebarger, R.S., Addison, R.C. Jr.: Laser-based ultrasonics on Gr/epoxy composite. J. Nondestruct. Eval. 9, 229–238 (1990) CrossRefGoogle Scholar
  28. 28.
    Monchalin, J.-P., Neron, C.: Inspection of composite materials by laser–ultrasonics. Can. Aeronaut. Space J. 43, 23–30 (1997) Google Scholar
  29. 29.
    Monchalin, J.-P.: Laser—ultrasonics: from the laboratory to industry. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 3–31. American Institute of Physics, New York (2004) Google Scholar
  30. 30.
    Sakamoto, J.M.S., Baba, A., Tittmann, B.R., Mulry, B.R., Kropf, M., Pacheco, G.M.: Nondestructive inspection of a composite material sample using laser ultrasonic system with beam homogenizer. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 30(B). AIP Conference Proceedings, vol. 1335, pp. 935–941. American Institute of Physics, New York (2004) Google Scholar
  31. 31.
    Karabutov, A.A., Savateeva, E.V., Podymova, N.B., Oraevsky, A.A.: Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000) CrossRefGoogle Scholar
  32. 32.
    Karabutov, A.A., Savateeva, E.V., Zharinov, A.N., Karabutov, A.A. Jr.: Contact laser ultrasonic evaluation of construction materials. In: Proceed NDT in Progress 2009, Prague, Czech Republic, E-J. NDT, vol. 15, No. 04 (2010). Google Scholar
  33. 33.
    De Moura, E.P., Normando, P.G., Gonçalves, L.L., Kruger, S.E.: Characterization of cast iron microstructure through fluctuation and fractal analyses of ultrasonic backscattered signals combined with classification techniques. J. Nondestruct. Eval. 31, 90–98 (2012) CrossRefGoogle Scholar
  34. 34.
    Kechter, G.E., Achenbach, J.D.: Void characterization using ultrasonic backscatter from void clusters. Res. Nondestruct. Eval. 1, 13–29 (1989) CrossRefGoogle Scholar
  35. 35.
    Scott, W.R., Gordon, P.F.: Ultrasonic spectral analysis for nondestructive testing of layered composite materials. J. Acoust. Soc. Am. 62, 108–116 (1984) CrossRefGoogle Scholar
  36. 36.
    Dean, E.A.: Elastic moduli of porous sintered materials as modeled by a variable–aspect–ratio self-consistent oblate-spheroidal-inclusion theory. J. Am. Ceram. Soc. 66, 847–854 (1983) CrossRefGoogle Scholar
  37. 37.
    Maitra, A.K., Phani, K.K.: Ultrasonic evaluation of elastic parameters of sintered powder compacts. J. Mater. Sci. 29, 4415–4419 (1994) CrossRefGoogle Scholar
  38. 38.
    Phani, K.K.: Porosity dependence of ultrasonic velocity in sintered materials—a model based on the self-consistent spheroidal inclusion theory. J. Mater. Sci. 31, 272–279 (1996) CrossRefGoogle Scholar
  39. 39.
    Polyakov, V.V., Golovin, A.V.: The effect of porosity on the velocity of ultrasonic waves in metals. Tech. Phys. Lett. 20, 452–453 (1994) Google Scholar
  40. 40.
    Polyakov, V.V., Golovin, A.V.: Elastic moduli of porous metals. Phys. Met. Metallogr. 79, 147–149 (1995) Google Scholar
  41. 41.
    Sayers, C.M., Smith, R.L.: The propagation of ultrasound in porous media. Ultrasonics 20, 201–205 (1982) CrossRefGoogle Scholar
  42. 42.
    Boccaccini, D.N., Boccaccini, A.R.: Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. J. Nondestruct. Eval. 16, 187–192 (1997) CrossRefGoogle Scholar
  43. 43.
    Lin, L., Luo, M., Tian, H.T.: Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient. In: Proceed WCNDT 2008, Shanghai, China, vol. 3, pp. 2249–2257. Curran Associates, Inc., New York (2011) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.International Laser CenterM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations