Skip to main content
Log in

Nondestructive Porosity Assessment of CFRP Composites with Spectral Analysis of Backscattered Laser-Induced Ultrasonic Pulses

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The laser-ultrasonic method for nondestructive quantitative local porosity assessment for CFRP composites is proposed and realized experimentally for only one available flat surface of a specimen or a product. This method combines the laser thermoelastic generation and the high-sensitivity piezoelectric detection of broadband pulses of longitudinal ultrasonic waves and does not require the detection of the backwall echo ultrasonic signal. The generation and the detection of ultrasonic pulses is carried out with the specially designed laser-ultrasonic transducer, which allows one to obtain both the temporal profile and the frequency spectrum of a part of the ultrasonic signal backscattered by gas voids in a composite specimen. The frequency spectrum of backscattered ultrasonic pulses is analyzed for three sets of CFRP specimens with different epoxy matrix fractions and porosity. The empirical relation between porosity of CFRP specimens and the spectral power (structural noise power) of ultrasonic signals backscattered by voids is obtained for porosity values up to 0.15. This relation allows one to evaluate the local porosity from measured structural noise power both for CFRP specimens and products fabricated from the same composite material. The proposed laser-ultrasonic setup demonstrates a basis for a system of CFRP porosity assessment in field conditions. It can be very useful especially for nondestructive detection of structural changes of composite materials that will allow evaluation of products during their life time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kelly, A., Zweben, C. (eds.): Comprehensive Composite Materials. Elsevier, Amsterdam (2000)

    Google Scholar 

  2. Adams, R.D., Cawley, P.: A review of defect types and nondestructive testing techniques for composites and bonded joints. NDT Int. 21, 208–222 (1988)

    Article  Google Scholar 

  3. Achenbach, J.D. (ed.): Evaluation of Materials and Structures by Quantitative Ultrasonics. Springer, Wien and New York (1993)

    Google Scholar 

  4. Achenbach, J.D.: Quantitative nondestructive evaluation. Int. J. Solids Struct. 37, 13–27 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rokhlin, S.I., Chimenti, D.E., Nagy, P.B.: Physical Ultrasonics of Composites. Oxford University Press, Oxford (2011)

    Google Scholar 

  6. Stone, D.E.W., Clarke, B.: Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics. Nondestruct. Test. 8, 137–145 (1975)

    Article  Google Scholar 

  7. Martin, B.G.: Ultrasonic wave propagation in fiber-reinforced solids containing voids. J. Appl. Phys. 48, 3368–3373 (1977)

    Article  Google Scholar 

  8. Reynolds, W.N., Wilkinson, S.J.: The analysis of fibre-reinforced porous composite materials by the measurement of ultrasonic wave velocities. Ultrasonics 16, 159–163 (1978)

    Article  Google Scholar 

  9. Hale, J.M., Ashton, J.N.: Ultrasonic attenuation in voided fibre-reinforced plastics. NDT Int. 21, 321–326 (1988)

    Article  Google Scholar 

  10. Daniel, I.M., Wooh, S.C., Komsky, I.: Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements. J. Nondestruct. Eval. 11, 1–8 (1992)

    Article  Google Scholar 

  11. Jeong, H., Hsu, D.K.: Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites. Ultrasonics 33, 195–203 (1995)

    Article  Google Scholar 

  12. Takatsubo, J., Urabe, K., Tsuda, H., Toyama, N., Wang, B.: Experimental and theoretical investigation of ultrasound propagation in materials containing void inclusions. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 1083–1090. American Institute of Physics, New York (2004)

    Google Scholar 

  13. Stone, M.A.: Evaluation of oven-cured, solid carbon/epoxy composites with various porosity levels. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 28. AIP Conference Proceedings, vol. 1096, pp. 1025–1032. American Institute of Physics, New York (2009)

    Google Scholar 

  14. Lin, L., Chen, J., Zhang, X., Li, X.: A novel 2-D random void model and its application in ultrasonically determined void content for composite materials. NDT E Int. 44, 254–260 (2011)

    Article  Google Scholar 

  15. Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic characterization of microstructure in powder metal alloy. In: Analytical Ultrasonics in Materials Research and Testing. NASA Conf. Publ., vol. 2383, pp. 31–49 (1984)

    Google Scholar 

  16. Tittmann, B.R., Ahlberg, L.A., Fertig, K.W.: Ultrasonic microstructural noise parameters in a powder metal alloy. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 3A, pp. 57–63. Plenum, New York (1984)

    Chapter  Google Scholar 

  17. Kogan, V.G., Hsu, D.K., Rose, J.H.: Characterization of flaws using the zeroes of the real and imaginary parts of the ultrasonic scattering amplitude. J. Nondestruct. Eval. 5, 57–68 (1985)

    Article  Google Scholar 

  18. Vary, A.: Material property characterization. In: Moore, P.O. (ed.) Nondestructive Testing Handbook, Ultrasonic Testing, 3rd edn. vol. 7, pp. 365–431. ASTM, Columbus (2007)

    Google Scholar 

  19. Truell, R., Elbaum, C., Chick, B.: Ultrasonic Methods in Solid State Physics. Academic Press, New York (1969)

    Google Scholar 

  20. Desilets, C.S., Fraser, J.D., Kino, G.S.: The design of efficient broad-band piezoelectric transducers. IEEE Trans. Sonics Ultrason. 25, 115–125 (1978)

    Article  Google Scholar 

  21. Foster, F.S., Ryan, L.K., Turnbull, D.H.: Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20–80 MHz) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 446–453 (1991)

    Article  Google Scholar 

  22. Chung, C.-H., Lee, Y.-C.: Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials. J. Nondestruct. Eval. 28, 101–110 (2009)

    Article  Google Scholar 

  23. Scruby, C.B., Drain, L.E.: Laser Ultrasonics: Techniques and Applications. Adam Hilger, Bristol (1990)

    Google Scholar 

  24. Gusev, V.E., Karabutov, A.A.: Laser Optoacoustics. American Institute of Physics, New York (1993)

    Google Scholar 

  25. Karabutov, A.A., Matrosov, M.P., Podymova, N.B., Pyzh, V.A.: Acoustic pulse spectroscopy using a laser sound source. Sov. Phys. Acoust. 37, 157–163 (1991)

    Google Scholar 

  26. Karabutov, A.A., Podymova, N.B.: Nondestructive evaluation of fatigue changes of composite structure by laser ultrasonic method. Mech. Compos. Mater. 31, 198–203 (1995)

    Article  Google Scholar 

  27. Tittmann, B.R., Linebarger, R.S., Addison, R.C. Jr.: Laser-based ultrasonics on Gr/epoxy composite. J. Nondestruct. Eval. 9, 229–238 (1990)

    Article  Google Scholar 

  28. Monchalin, J.-P., Neron, C.: Inspection of composite materials by laser–ultrasonics. Can. Aeronaut. Space J. 43, 23–30 (1997)

    Google Scholar 

  29. Monchalin, J.-P.: Laser—ultrasonics: from the laboratory to industry. In: Thompson, D.O., Chimenti, D.E. (eds.) Quantitative Nondestructive Evaluation. AIP Conference Proceedings, vol. 700, pp. 3–31. American Institute of Physics, New York (2004)

    Google Scholar 

  30. Sakamoto, J.M.S., Baba, A., Tittmann, B.R., Mulry, B.R., Kropf, M., Pacheco, G.M.: Nondestructive inspection of a composite material sample using laser ultrasonic system with beam homogenizer. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 30(B). AIP Conference Proceedings, vol. 1335, pp. 935–941. American Institute of Physics, New York (2004)

    Google Scholar 

  31. Karabutov, A.A., Savateeva, E.V., Podymova, N.B., Oraevsky, A.A.: Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer. J. Appl. Phys. 87, 2003–2014 (2000)

    Article  Google Scholar 

  32. Karabutov, A.A., Savateeva, E.V., Zharinov, A.N., Karabutov, A.A. Jr.: Contact laser ultrasonic evaluation of construction materials. In: Proceed NDT in Progress 2009, Prague, Czech Republic, E-J. NDT, vol. 15, No. 04 (2010). http://www.ndt.net/article/Prague2009/ndtip/proceedings/Karabutov.pdf

    Google Scholar 

  33. De Moura, E.P., Normando, P.G., Gonçalves, L.L., Kruger, S.E.: Characterization of cast iron microstructure through fluctuation and fractal analyses of ultrasonic backscattered signals combined with classification techniques. J. Nondestruct. Eval. 31, 90–98 (2012)

    Article  Google Scholar 

  34. Kechter, G.E., Achenbach, J.D.: Void characterization using ultrasonic backscatter from void clusters. Res. Nondestruct. Eval. 1, 13–29 (1989)

    Article  Google Scholar 

  35. Scott, W.R., Gordon, P.F.: Ultrasonic spectral analysis for nondestructive testing of layered composite materials. J. Acoust. Soc. Am. 62, 108–116 (1984)

    Article  Google Scholar 

  36. Dean, E.A.: Elastic moduli of porous sintered materials as modeled by a variable–aspect–ratio self-consistent oblate-spheroidal-inclusion theory. J. Am. Ceram. Soc. 66, 847–854 (1983)

    Article  Google Scholar 

  37. Maitra, A.K., Phani, K.K.: Ultrasonic evaluation of elastic parameters of sintered powder compacts. J. Mater. Sci. 29, 4415–4419 (1994)

    Article  Google Scholar 

  38. Phani, K.K.: Porosity dependence of ultrasonic velocity in sintered materials—a model based on the self-consistent spheroidal inclusion theory. J. Mater. Sci. 31, 272–279 (1996)

    Article  Google Scholar 

  39. Polyakov, V.V., Golovin, A.V.: The effect of porosity on the velocity of ultrasonic waves in metals. Tech. Phys. Lett. 20, 452–453 (1994)

    Google Scholar 

  40. Polyakov, V.V., Golovin, A.V.: Elastic moduli of porous metals. Phys. Met. Metallogr. 79, 147–149 (1995)

    Google Scholar 

  41. Sayers, C.M., Smith, R.L.: The propagation of ultrasound in porous media. Ultrasonics 20, 201–205 (1982)

    Article  Google Scholar 

  42. Boccaccini, D.N., Boccaccini, A.R.: Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. J. Nondestruct. Eval. 16, 187–192 (1997)

    Article  Google Scholar 

  43. Lin, L., Luo, M., Tian, H.T.: Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient. In: Proceed WCNDT 2008, Shanghai, China, vol. 3, pp. 2249–2257. Curran Associates, Inc., New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Podymova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabutov, A.A., Podymova, N.B. Nondestructive Porosity Assessment of CFRP Composites with Spectral Analysis of Backscattered Laser-Induced Ultrasonic Pulses. J Nondestruct Eval 32, 315–324 (2013). https://doi.org/10.1007/s10921-013-0184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0184-x

Keywords

Navigation