Journal of Nondestructive Evaluation

, Volume 32, Issue 1, pp 25–36 | Cite as

Evaluation of Concrete Distributed Cracks by Ultrasonic Travel Time Shift Under an External Mechanical Perturbation: Study of Indirect and Semi-direct Transmission Configurations



Techniques based on non-linear acoustics have been proven sensitive to micro-defects in heterogeneous materials, such as concrete, but their implementation on-site is very restrictive. Ultrasonic travel time shift, a technique where a high frequency ultrasonic wave probes the medium while a low frequency elastic wave disturbs it to create a “time delay”, is a new promising technique that may be used efficiently on-site. This technique is based on nonlinear behaviour of concrete. Moreover, this technique offers the possibility of evaluating linear parameter, such as ultrasonic pulse velocity of direct waves. The scope of this paper is to study the applicability of the technique at different level of concrete damage and define its advantages, limitations in order to optimize its use.

Because of the large dimensions, the geometry and limited access to various faces of existing structures, the transducers often have to be set on the same side. Two types of configurations, the indirect transmission (with incident waves at 90) and the semi-direct transmission (with incident waves at 45), were studied with cement base samples at different levels of damage (generated by freeze-thaw cycles). Up to now, test results have shown that time-shift is more sensitive when used in an indirect configuration of transmission rather than in a semi-direct configuration. Overall, the non-linear time-shift technique is much more sensitive to the initiation of cracking than linear indicators and its versatility (different indicators for different levels of damage) is of interest for rapid testing of structures.


Ultrasonic testing Non destructive Nonlinearity Concrete Damage Coda wave Interferometry 


  1. 1.
    Shah, A.A., Ribakov, Y.: Non-destructive evaluation of concrete in damaged and undamaged states. Mater. Des. 30, 3504–3511 (2009) CrossRefGoogle Scholar
  2. 2.
    Bentahar, M., Marec, A., El Guerjouma, R., Thomas, J., Tournat, V.: Experimental investigations on non-linear slow dynamics of damaged materials: correlation with acoustic emission. In: Nonlinear Acoustics—Fundamentals and Applications: 18th International Symposium on Nonlinear Acoustics—ISNA18, USA, pp. 501–504. AIP, New York (2008) Google Scholar
  3. 3.
    Ostrovsky, L.A., Johnson, P.A.: Nonlinear dynamics of rock: hysteretic behavior. Radiophys. Quantum Electron. 44, 450–464 (2001) CrossRefGoogle Scholar
  4. 4.
    Van Den Abeele, K.E.-A., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT E Int. 34, 239–248 (2001) CrossRefGoogle Scholar
  5. 5.
    David, J., Cheeke, N.: Fundamentals and Applications of Ultrasonic Waves, pp. 324–326. CRC Press LLC, Boca Raton (2002) CrossRefGoogle Scholar
  6. 6.
    Turgut, P., Kucuk, O.F.: Comparative relationships of direct, indirect, and semi-direct ultrasonic pulse velocity measurements in concrete. Russ. J. Nondestruct. Test. 42, 745–751 (2006) CrossRefGoogle Scholar
  7. 7.
    Kodjo, A.S.: Contribution à la caractérisation des bétons endommagés par des méthodes de l’acoustique non linéaire. Application à la réaction alcalis-silice Ph.D. thesis in French, Université de Sherbrooke and Université de Cergy-Pontoise (2008) Google Scholar
  8. 8.
    Hughes, D.S., Kelly, J.L.: Second-order elastic deformation of solids. Phys. Rev. 92, 1147–1149 (1953) Google Scholar
  9. 9.
    Pao, Y., Sachse, W., Fukuoka, H.: Acoustoelasticity and ultrasonic measurement of residual stress. In: Mason, R., Thurston, W. (eds.) Physical Acoustics, vol. XVII, Orlando, Florida, pp. 61–143 (1984) Google Scholar
  10. 10.
    Rasolofosaon, P., Zinszner, B., Johnson, P.A.: Propagation des ondes élastiques dans les matériaux non linéaires. Rev. Inst. Fr. Pét. 52, 585–608 (1997) Google Scholar
  11. 11.
    Lillamand, I., Chaix, J.F., Ploix, M.A., Garnier, V.: Acoustoelastic effect in concrete material under uni-axial compressive loading. NDT E Int. 43, 655–660 (2010) CrossRefGoogle Scholar
  12. 12.
    Snieder, R., Gret, A., Douma, H., Scales, J.: Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science 295, 2253–2255 (2002) CrossRefGoogle Scholar
  13. 13.
    Snieder, R.: Coda wave interferometry. In: Yearbook of Science and Technology, pp. 54–56. McGraw-Hill, New York (2004) Google Scholar
  14. 14.
    Payan, C., Garnier, V., Moysan, J., Johnson, P.A.: Determination of third order elastic constants in a complex solid applying coda wave interferometry. Appl. Phys. Lett. 94(1), 011904 (2009) CrossRefGoogle Scholar
  15. 15.
    Murnaghan, F.D.: Finite Deformations of an Elastic Solid. Wiley, New York (1951) Google Scholar
  16. 16.
    Tremblay, N., Larose, E., Rossetto, V.: Probing slow dynamics of consolidated granular multicomposite materials by diffuse acoustic waves spectroscopy. J. Acoust. Soc. Am. 127, 1239–1243 (2010) CrossRefGoogle Scholar
  17. 17.
    Lacouture, J.: Modélisation de l’évolution des coefficients mécaniques du béton pendant la prise. Liaison avec les mesures ultrasonores linéaires et non linéaires. Ph.D. thesis, in French, Université Paris 7 (2002) Google Scholar
  18. 18.
    Schurr, D., Kim, J.Y., Sabra, K.G., Jacobs, L.J.: Damage detection in concrete using coda wave interferometry. NDT E Int. 44, 728–735 (2011) CrossRefGoogle Scholar
  19. 19.
    Kodjo, A.S., Rivard, P., Cohen-Tenoudji, F., Gallias, J.: Impact of the alkali-silica reaction products on slow dynamics behavior of concrete. Cem. Concr. Res. 41, 422–428 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Civil Engineering DepartmentUniversité de SherbrookeSherbrookeCanada
  2. 2.Département de Géologie et Génie GéologiqueUniversité LavalQuébecCanada

Personalised recommendations