Journal of Nondestructive Evaluation

, Volume 30, Issue 1, pp 1–8 | Cite as

Integrated Piezoelectric Ultrasonic Receivers for Laser Ultrasound in Non-destructive Testing of Metals

  • K.-T. Wu
  • C.-K. Jen
  • M. Kobayashi
  • A. Blouin


Thick (>50 μm) piezoelectric films have been deposited directly on top of steel and aluminum substrates as integrated ultrasonic transducer (IUT) receivers to detect laser generated ultrasound. The film fabrication is based on a sol-gel spray technique. In this study IUTs intrinsically acting as bulk longitudinal wave receivers use various mode conversion approaches and serve as longitudinal, shear, symmetric, anti-symmetric and shear horizontal plate wave receivers. Different laser generation conditions such as point and line sources of different sizes are also applied to investigate the capabilities of IUT receivers. Ultrasonic measurements on metal substrates with planar and curved surfaces at temperature up to 400°C using laser generated and IUT ultrasound receiver are demonstrated.


Integrated ultrasonic transducers Laser ultrasound High temperature Longitudinal and shear waves Plate acoustic waves Non-destructive testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    White, R.M.: Generation of elastic waves by transient surface heating. J. Appl. Phys. 34, 3559–3567 (1963) CrossRefGoogle Scholar
  2. 2.
    Scruby, C.B., Dewhurst, R.J., Hutchins, D.A., Palmer, S.B.: Laser generation of ultrasound in metals. In: Sharpe, R.S. (ed.) Res. Techniques in Nondestructrive Testing, vol. 5, pp. 281–327. Academic Press, San Diego (1982) Google Scholar
  3. 3.
    Hutchins, D.A.: Ultrasonic generation by pulsed lasers. In: Mason, W.P., Thurston, R.N. (eds.) Phys. Acoustics, vol. 18, pp. 21–123. Academic Press, San Diego (1988) Google Scholar
  4. 4.
    Adler, R., Korpel, A., Desmares, P.: An instrument for making surface waves visible. IEEE Trans. Sonics Ultrason. 15, 157–161 (1968) Google Scholar
  5. 5.
    Kessler, L.W., Palermo, P.R., Korpel, A.: Recent developments with the scanning laser acoustic microscope. In: Green, P.S. (ed.) Acoustic Holography, pp. 15–23. Plenum Press, New York (1974) Google Scholar
  6. 6.
    Monchalin, J.P.: Optical detection of ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986) CrossRefGoogle Scholar
  7. 7.
    Wagner, J.W.: Optical detection of ultrasound. In: Mason, W.P., Thurston, R.N. (eds.) Phys. Acoustics, vol. 19, pp. 201–264. Academic Press, San Diego (1990) Google Scholar
  8. 8.
    Ing, R.K., Monchalin, J.P.: Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal. Appl. Phys. Lett. 59, 3233–3235 (1991) CrossRefGoogle Scholar
  9. 9.
    Birks, A.S., Green, R.E. Jr., McIntire P.: Nondestructive Testing Handbook, 2nd edn. Ultrasonic Testing, ASNT, vol. 7. (1991) Google Scholar
  10. 10.
    Gandhi, M.V., Thompson, B.S.: Smart Materials and Structures. Chapman & Hall, London (1992) Google Scholar
  11. 11.
    Lee, J.-R., Takatsubo, J., Toyama, N.: Disbond monitoring at wing stringer tip based on built-in ultrasonic transducers and a pulsed laser. Smart Mater. Struct. 16(4), 1025–1035 (2007) CrossRefGoogle Scholar
  12. 12.
    Lee, J.-R., Takatsubo, J., Toyama, N., Kang, D.-H.: Health monitoring of complex curved structures using an ultrasonic wavefield propagation imaging system. Meas. Sci. Technol. 18(12), 3816–3824 (2007) CrossRefGoogle Scholar
  13. 13.
    Yashiro, S., Takatsubo, J., Miyauchi, H., Toyama, N.: A novel technique for visualizing ultrasonic waves in general solid media by pulsed laser scan. NDT E Int. 41(2), 137–144 (2008) CrossRefGoogle Scholar
  14. 14.
    Chia, C.C., Lee, J.-R., Shin, H.-J.: Hot target inspection using a welded fibre acoustic wave piezoelectric sensor and a laser-ultrasonic mirror scanner. Meas. Sci. Technol. 20(12), 127003_1-8 (2009) CrossRefGoogle Scholar
  15. 15.
    Barrow, D.A., Petroff, T.E., Tandon, R.P., Sayer, M.: Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. J. Appl. Phys. 81(2), 876–881 (1997) CrossRefGoogle Scholar
  16. 16.
    Kobayashi, M., Jen, C.-K.: Piezoelectric thick bismuth titanate/PZT composite film transducers for smart NDE of metals. Smart Mater. Struct. 13(4), 951–956 (2004) CrossRefGoogle Scholar
  17. 17.
    Kobayashi, M., Jen, C.-K., Bussiere, J.F., Wu, K.-T.: High temperature integrated and flexible ultrasonic transducers for non-destructive testing. NDT E Int. 42(2), 157–161 (2009) CrossRefGoogle Scholar
  18. 18.
    Wu, K.-T., Kobayashi, M., Jen, C.-K.: Integrated high temperature piezoelectric plate acoustic wave transducers using mode conversion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1218–1224 (2009) CrossRefGoogle Scholar
  19. 19.
    Jen, C.-K., Ono, Y., Kobayashi, M.: High temperature integrated ultrasonic shear wave probes. Appl. Phys. Lett. 89, 183506_1-3 (2006) Google Scholar
  20. 20.
    Jen, C.-K., Wu, K.-T., Kobayashi, M., Kuo, J.-H., Mrad, N.: Integrated surface and plate acoustic wave sensors for health monitoring. Proc. SPIE Symp. Smart Struct. Mater. 6532, 6532061-8 (2007) Google Scholar
  21. 21.
    Walker, W.F., Trahey, G.E.: A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(2), 301–308 (1995) CrossRefGoogle Scholar
  22. 22.
    Aussel, J.-D., Monchalin, J.-P.: Precision laser-ultrasonic velocity measurement and elastic constant determination. Ultrasonics 27(3), 165–177 (1989) CrossRefGoogle Scholar
  23. 23.
    Kazys, R., Voleisis, A., Voleisiene, B.: High temperature ultrasonic transducers—review. Ultragarsas (Ultrasound) 63(2), 7–17 (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Industrial Material InstituteNational Research Council CanadaBouchervilleCanada
  2. 2.Department of Electrical and Computer Eng.McGill UniversityMontrealCanada

Personalised recommendations