Skip to main content

Advertisement

Log in

Lightweight Splint Design for Individualized Treatment of Distal Radius Fracture

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A systematic design approach is proposed for medical splints for individualized treatment of the distal radius fracture. An initial split structural model is first constructed by 3D scanning of an injured limb. Based on the biomechanical theory and clinical experiences, the topology optimization method is applied to design the splint structure. The optimized lightweight splint is realized by additive manufacturing using polylactic acid. Compared to the traditional designs for the distal radius fracture, the optimized design by the proposed approach exhibits a weight reduction of more than 40%. Besides, the mechanical properties of the splint meet the requirements of medical treatment according to the simulation results. Numerical examples are provided to demonstrate the applicability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nellans, K. W., MD, M. P. H., Evan Kowalski, B. S., and Chung, K. C., The epidemiology of distal radius fractures. Hand Clin 28(2):113–125, 2012.

    Article  Google Scholar 

  2. Delasobera, B. E., Place, R., Howell, J., and Davis, J. E., Serious infectious complications related to extremity cast/splint placement in children. J Emerg Med 41(1):47–50, 2011.

    Article  Google Scholar 

  3. Inglis, M. R. B., McClelland, B., Sutherland, L. M., and Cundy, P. J., Synthetic versus plaster of Paris casts in the treatment of fractures of the forearm in children. A randomised trial of clinical outcomes and patient satisfaction. Bone Joint J 95b(9):1285–1289, 2013.

    Article  Google Scholar 

  4. Bani, M. A., and Arazpour, M., The effect of custom-made splints in patients with the first carpometacarpal joint osteoarthritis. Original Research Report 37(2):139–144, 2012.

    Google Scholar 

  5. Blaya, F., San Pedro Orozco, P., Lopez-Silva, J., and D’Amato, R., Design of an Orthopedic Product by using additive manufacturing technology: The arm splint. J Med Syst 42(3):54, 2018.

    Article  Google Scholar 

  6. Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P., and Navrat, T., Pilot study of the wrist orthosis design process. Rapid Prototyping Journal 20(1):27–32, 2014. https://doi.org/10.1108/rpj-03-2012-0027.

    Article  Google Scholar 

  7. Huang, T.-H., Feng, C.-K., Gung, Y.-W., Tsai, M.-W., Chen, C.-S., and Liu, C.-L., Optimization design of thumbspica splint using finite element method. Med Biol Eng Comput 44(12):1105–1111, 2006. https://doi.org/10.1007/s11517-006-0131-4.

    Article  PubMed  Google Scholar 

  8. Bendsøe, M. P., and Kikuchi, N., Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71(2):197–224, 1988. https://doi.org/10.1016/0045-7825(88)90086-2.

    Article  Google Scholar 

  9. Allaire, G., Jouve, F., and Maillot, H., Topology optimization for minimum stress design with the homogenization method. Struct Multidiscip O 28(2–3):87–98, 2004.

    Google Scholar 

  10. Guo, L.-X., and Yin, J.-Y., Finite element analysis and design of an interspinous device using topology optimization. Med Biol Eng Comput 57(1):89–98, 2019.

    Article  Google Scholar 

  11. Remouchamps, A., Bruyneel, M., Fleury, C., and Grihon, S., Application of a bi-level scheme including topology optimization to the design of an aircraft pylon. Struct Multidiscip O 44(6):739–750, 2011.

    Article  Google Scholar 

  12. Zhang, W., and Sun, S., Scale-related topology optimization of cellular materials and structures. Int J Numer Meth Eng 68(9):993–1011, 2006.

    Article  Google Scholar 

  13. Deaton, J. D., and Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct Multidiscip O 49(1):1–38, 2014.

    Article  Google Scholar 

  14. Guo, X., and Cheng, G.-D., Recent development in structural design and optimization. Acta Mech Sinica-Prc 26(6):807–823, 2010.

    Article  Google Scholar 

  15. Sigmund, O., and Maute, K., Topology optimization approaches. A comparative review. Struct Multidiscip O 48(6):1031–1055, 2013.

    Article  Google Scholar 

  16. Zhou, M., and YuWang, M., Engineering feature design for level set based structural optimization. Computer Aided Design 45(12):1524–1537, 2013.

    Article  Google Scholar 

  17. Zhou, M., Lazarov, B. S., Wang, F., and Sigmund, O., Minimum length scale in topology optimization by geometric constraints. Computer Methods in Applied Mechanics and Engineering 293:266–282, 2015, 2015.

    Article  Google Scholar 

  18. Liao, Y.-C., Feng, C.-K., Tsai, M., and Chen, C.-S., Shape modification of the Boston brace using a finite-element method with topology optimization. Spine 32(26):3014–3019, 2007.

    Article  Google Scholar 

  19. Cazon, A., and Kelly, S., Analysis and comparison of wrist splint designs using the finite element method: Multi-material three-dimensional printing compared to typical existing practice with thermoplastics. Engineering in Medicine 231(9):881–897, 2017.

    Article  Google Scholar 

  20. Yan-Jun Chen, H., Lin, X., Zhang, W., Huang, L. S., and Wang, D., Application of 3D-printed and patient-specific cast for the treatment of distal radius fractures: Initial experience. 3D Print Med 3(1):11, 2017.

    Article  Google Scholar 

  21. Huang, T.-H., Feng, C.-K., Gung, Y.-W., Tsai, M.-W., Chen, C.-S., and Liu, C.-L., Optimization design of thumbspica splint using finite element method. Med Biol Eng Comput 44(12):1105–1111, 2006.

    Article  Google Scholar 

  22. Hughes, T. J. R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 2000.

  23. Bendsøe, M. P., Sigmund, O., Topology Optimization Theory, Methods, and Applications, 2004.

  24. Bendsøe, M. P., Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202, 1989.

    Article  Google Scholar 

  25. Svanberg, K., The method of moving asymptotes—A new method for structural optimization. Int J Numer Methods Eng 24(2):359–373, 1987.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key Project of the Medical-Engineering Cross Research Foundation of Shanghai Jiao Tong University (Grant No.YG2015ZD02), the Key Scientific Research Project of Shanghai Municipal Commission of Health and Family Planning (Grant No.201640021), National Natural Science Foundation of China (Grant Nos. 51705311) and the State Key Laboratory of Mechanical System and Vibration of Shanghai Jiao Tong University (Grant No. MSVZD201709).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoBing Xi or Mingdong Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Ding, M., Kong, B. et al. Lightweight Splint Design for Individualized Treatment of Distal Radius Fracture. J Med Syst 43, 284 (2019). https://doi.org/10.1007/s10916-019-1404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1404-4

Keywords

Navigation