A Novel and Freely Available Interactive 3d Model of the Internal Carotid Artery

  • Marc Valera-Melé
  • Anna Puigdellívol-Sánchez
  • Marija Mavar-Haramija
  • Juan A. Juanes-Méndez
  • Luis San-Román
  • Matteo de Notaris
  • Alberto Prats-Galino
Education & Training
Part of the following topical collections:
  1. Emergent Visualization Systems in Biomedical Sciences (TEEM 2017)


We describe a new and freely available 3D interactive model of the intracranial internal carotid artery (ICA) and the skull base that also allows to display and compare its main segment classifications. High-resolution 3D human angiography (isometric voxel’s size 0.36 mm) and Computed Tomography angiography images were exported to Virtual Reality Modeling Language (VRML) format for processing in a 3D software platform and embedding in a 3D Portable Document Format (PDF) document that can be freely downloaded at and runs under Acrobat Reader on Mac and Windows computers and Windows 10 tablets. The 3D–PDF allows for visualisation and interaction through JavaScript-based functions (including zoom, rotation, selective visualization and transparentation of structures or a predefined sequence view of the main segment classifications if desired). The ICA and its main branches and loops, the Gasserian ganglion, the petrolingual ligament and the proximal and distal dural rings within the skull base environment (anterior and posterior clinoid processes, silla turcica, ethmoid and sphenoid bones, orbital fossae) may be visualized from different perspectives. This interactive 3D–PDF provides virtual views of the ICA and becomes an innovative tool to improve the understanding of the neuroanatomy of the ICA and surrounding structures.


3D–PDF document, Internal carotid artery segments Anatomic models Skull base anatomy CT angiography 3D angiography 



The authors are grateful to Olga Fuentes for her contribution to image processing.


This study was funded by the Fundació Marató TV3 Project [411/U/2011 - TITLE: Quantitative analysis and computer aided simulation of minimally invasive approaches for intracranial vascular lesions].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informal consent

Informal consent was obtained from the individual participant included in the study. All procedures were in accordance with the ethical standards of the institution and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Newe, A., and Becker, L., Using interactive 3D PDF for exploring complex biomedical data: experiences and solutions. Stud Health Technol Inform 228:740–744, 2016.PubMedGoogle Scholar
  2. 2.
    van de Kamp, T., dos Santos, R. T., Vagovic, P., Baumbach, T., and Riedel, A., Three-dimensional reconstructions come to life- interactive 3D PDF animations in functional morphology. Plos One 9:e102355, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Quayle, M. R., Barnes, D. G., Kaluza, O. L., and McHenry, C. R., An interactive three dimensional approach to anatomical description-the jaw musculature of the Australian laughing kookaburra (Dacelo novaeguineae). PeerJ 2:e3555, 2014.CrossRefGoogle Scholar
  4. 4.
    Skinner, M. M., Kivell, T. L., Potze, S., and Hublin, J. J., Microtomographic archive of fossil hominin specimens from Kromdraai B, South Africa. J Hum Evol 64:434–447, 2013.CrossRefPubMedGoogle Scholar
  5. 5.
    Bakker, B. S., de Jong, K. H., Hagoort, J., Oostra, R. J., and Moorman, A. F., Towards a 3-dimensional atlas of the developing human embryo: the Amsterdam experience. Reprod Toxicol 34:225–236, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Balava, V., Uhl, J. F., Lanore, A., Salachas, C., Samoyeau, T., Nqo, C., Bensaid, C., Cornou, C., Rossi, L., Douard, R., Bats, A. S., Lecuru, F., and Delmas, V., 3D modelling of the female pelvis by computer-assisted anatomical dissection: applications and perspectives. J Gynecol Obstet Biol Reprod (Paris) 45:467–477, 2016.CrossRefGoogle Scholar
  7. 7.
    Wu, Y., Dabhoiwala, N. F., Hagoort, J., Shan, J. L., Tan, L. W., Fang, B. J., Zhang, S. X., and Lamers, W. H., 3D topography of the young adult anal sphincter complex reconstructed from undeformed serial anatomical sections. PLos One 10:e0140736, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Newe, A., Becker, L., and Schenk, A., Application and evaluation of interactive 3D PDF for presenting and sharing planning results for liver surgery in clinical routine. PLoS One 9:e115697, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Notaris, M., Palma, K., Serra, L., Enseñat, J., Alobid, I., Poblete, J., González, J. B., Solari, D., Ferrer, E., and Prats-Galino, A., A Three-dimensional computer-based perspective of the skull base. World Neurosurg 82:S41–S48, 2014.CrossRefPubMedGoogle Scholar
  10. 10.
    De Notaris, M., Prats-Galino, A., Cavallo, L. M., Esposito, F., Iaconetta, G., González, J. B., Montagnani, S., Ferrer, E., and Cappabianca, P., Preliminary experience with a new three-dimensional computer-based model for the study and the analysis of skull base approaches. Childs Nerv Syst 26:621–626, 2010.CrossRefPubMedGoogle Scholar
  11. 11.
    D’Avella, E., De Notaris, M., Enseñat, J., Berenguer, J., Gragnaniello, C., Mavar, M., Ferrer, E., and Prats-Galino, A., The extended endoscopic endonasal transplanum transtuberculum approach to the anterior communicating artery complex: anatomical study. Acta Neurochir (Wien) 157:1495–1503, 2015.CrossRefGoogle Scholar
  12. 12.
    De Notaris, M., Prats-Galino, A., Enseñat, J., Topczewski, T., Ferrer, E., Cavallo, L. M., Cappabianca, P., and Solari, D., Quantitative analysis of progressive removal of nasal structures during endoscopic suprasellar approach. Laryngoscope 124:2231–2237, 2014.CrossRefPubMedGoogle Scholar
  13. 13.
    De Notaris, M., Solari, D., Cavallo, L. M., Enseñat, J., Alobid, I., Soria, G., Gonzalez, J. B., Ferrer, E., and Prats-Galino, A., The use of a three-dimensional novel computer-based model for analysis of the endonasal endoscopic approach to the midline skull base. World Neurosurg 75:106–113, 2011.CrossRefPubMedGoogle Scholar
  14. 14.
    Mavar-Haramija, M., Prats-Galino, A., Juanes-Méndez, J. A., Puigdellívol-Sánchez, A., and de Notaris, M., Interactive 3D-PDF presentations for the simulation and quantification of extended endoscopic endonasal surgical approaches. J Med Sys 39:127, 2015.CrossRefGoogle Scholar
  15. 15.
    Prats-Galino, A., Mavar, M., Reina, M. A., Puigdellívol-Sánchez, A., San-Molina, J., and De Andrés, J. A., Three-dimensional interactive model of lumbar spinal structures. Anaesthesia 69:521, 2014.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Loveren, H. R., Keller, J. T., El-Kalliny, M., Scodary, D. J., and Tew, J. M., The Dolenc technique for cavernous sinus exploration (cadaveric prosection). J Neurosurg 74:837–844, 1991.CrossRefPubMedGoogle Scholar
  17. 17.
    Fischer, E., Die lageabweichungen der vorderen hirnarterie im gefäbild. Zentralbl Neurochir 3:300–313, 1938.Google Scholar
  18. 18.
    Gibo, H., Lenkey, C., and Rhoton, Jr., A., Microsurgical anatomy of the supraclinoid portion of the internal carotid artery. J Neurosurg 55:560–574.19, 1981.CrossRefPubMedGoogle Scholar
  19. 19.
    Bouthillier, A., van Loveren, H. R., and Keller, J. T., Segments of the internal carotid artery: a new classification. Neurosurgery 38:425–433, 1996.PubMedGoogle Scholar
  20. 20.
    Labib, M., Prevedello, D., Carrau, R., Kerr, E., Naudy, C., Abou Al-Shaar, H., Corsten, M., and Kasam, A., A road map to the internal carotid artery in expanded endoscopic endonasal approaches to the ventral cranial base. Neurosurgery 10:448–471, 2014.CrossRefPubMedGoogle Scholar
  21. 21.
    Di Somma, A., Andaluz, N., Cavallo, L. M., de Notaris, M., Dallan, I., Solari, D., Zimmer, L. A., Keller, J. T., Zuccarello, M., Prats-Galino, A., and Cappabianca, P., Endoscopic transorbital superior eyelid approach: anatomical study from a neurosurgical perspective. J Neurosurg 15:1–14, 2017.CrossRefGoogle Scholar
  22. 22.
    Phelps, A., Naeger, D. M., and Marcovici, P., Embedding 3D radiology models in portable document format. AJR Am J Roentgenol 199:1342–1344, 2012.CrossRefPubMedGoogle Scholar
  23. 23.
    Prats-Galino, A., Reina, M. A., Mavar Haramija, M., Juanes Méndez, J. A., and De Andrés, J. A., 3D interactive model of lumbar spinal structures of anesthetic interest. Clin Anat 28:205–212, 2015.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Surgical Neuroanatomy, Human Anatomy and Embryology Unit, Faculty of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
  2. 2.CAP Antón Borja, Consorci Sanitari de TerrassaRubíSpain
  3. 3.VisualMed System Group, Human Anatomy and Histology DepartmentUniversity of SalamancaSalamancaSpain
  4. 4.Clinic Center of Diagnostic by Imaging –Angioradiology-, Hospital ClinicBarcelonaSpain
  5. 5.Neurosurgical Department, G Rummo HospitalBeneventoItaly

Personalised recommendations