Skip to main content

Advertisement

Log in

Accelerometer and Camera-Based Strategy for Improved Human Fall Detection

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow’s. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ageing, W.H.O., and Unit, L.C., WHO global report on falls prevention in older age. World Health Organization, 2008.

  2. Giannakouris, K., Ageing characterises the demographic perspectives of the european societies. Stat. Focus 72:2008, 2008.

    Google Scholar 

  3. Todd, C., and Skelton, D.: What are the main risk factors for falls among older people and what are the most effective interventions to prevent these falls? Copenhagen, WHO Regional Office for Europe, 2004.

  4. Yu, M., Miao, R., Adel, N., Mohsen, S., Wang, L., and Chambers, J., A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 16(6):1274–1286, 2012.

    Article  PubMed  Google Scholar 

  5. Heinrich, S., Rapp, K., Rissmann, U., Becker, C., and König , H.-H., Cost of falls in old age: a systematic review. Osteop. Int. 21(6):891–902, 2010.

    Article  CAS  Google Scholar 

  6. Soriano, T., DeCherrie, L., and Thomas, D., Falls in the community-dwelling older adult: a review for primary-care providers. Clin. Inter. Aging 2(4):545, 2007.

    Google Scholar 

  7. Delahoz, Y., and Labrador, M., Survey on fall detection and fall prevention using wearable and external sensors. Sensors 14(10):19806–19842, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zweifel, P., Felder, S., and Meiers, M., Ageing of population and health care expenditure: a red herring? Health Econ. 8(6):485–496, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Mubashir, M., Shao, L., and Seed, L., A survey on fall detection: Principles and approaches. Neurocomputing 100:144–152, 2013.

    Article  Google Scholar 

  10. Kwolek, B., and Kepski, M., Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3):489–501, 2014.

    Article  PubMed  Google Scholar 

  11. Howcroft, J., Kofman, J., and Lemaire, E., Review of fall risk assessment in geriatric populations using inertial sensors . J. Neuroeng. Rehab. 10(1):1, 2013.

    Article  Google Scholar 

  12. Rougier, C., Meunier, J., St-Arnaud, A., and Rousseau, J., Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circ. Syst. Vid. Technol. 21(5):611–622, 2011.

    Article  Google Scholar 

  13. Hazelhoff, L., Han, J., et al.: Video-based fall detection in the home using principal component analysis. In: Advanced Concepts for Intelligent Vision Systems, pp. 298–309. Springer, 2008.

  14. Vishwakarma, V., Mandal, C., and Sural, S., Automatic detection of human fall in video. In: Pattern Recognition and Machine Intelligence, pp. 616–623. Springer, 2007.

  15. Liu, C.-L., Lee, C.-H., and Lin, P.-M., A fall detection system using k-nearest neighbor classifier. Expert Syst. Appl. 37(10):7174–7181, 2010.

    Article  Google Scholar 

  16. Rimminen, H., Lindström, J., Linnavuo, M., and Sepponen, R., Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Trans. Inf. Techn. Biomed. Publ. IEEE Eng. Med. Biol. Soc. 14(6):1475–1476, 2010.

    Article  Google Scholar 

  17. Li, Y., Ho, K., and Popescu, M., A microphone array system for automatic fall detection. IEEE Trans. Biomed. Eng. 59(5):1291–1301, 2012.

    Article  PubMed  Google Scholar 

  18. Alwan, M., Rajendran, P., Kell, S., Mack, D., Dalal, S., Wolfe, M., and Felder, R., A smart and passive floor-vibration based fall detector for elderly. In: Information and Communication Technologies, 2006. ICTTA’06. 2nd. Vol. 1, pp. 1003–1007. IEEE, 2006.

  19. Gibson, R., Amira, A., Ramzan, N., de-la Higuera, P.C., and Pervez, Z., Multiple comparator classifier framework for accelerometer-based fall detection and diagnostic. Appl. Soft Comput. 39:94–103, 2016.

    Article  Google Scholar 

  20. Kwolek, B., and Kepski, M., Fuzzy inference-based fall detection using kinect and body-worn accelerometer. Appl. Soft Comput. 40:305–318, 2016.

    Article  Google Scholar 

  21. Kwolek, B., and Kepski, M., Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168:637–645, 2015.

    Article  Google Scholar 

  22. Tong, L., Song, Q., Ge, Y., and Liu, M., HMM-based human fall detection and prediction method using tri-axial accelerometer. IEEE Sensors J. 13(5):1849–1856, 2013.

    Article  Google Scholar 

  23. Veltink, P., Bussmann, H., De-Vries, W., Martens, W., and Lummel, R., Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans. Rehab. Eng. 4(4):375–385, 1996.

    Article  CAS  Google Scholar 

  24. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., and Jämsä, T., Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2):285–291, 2008.

    Article  PubMed  Google Scholar 

  25. Purwar, A., Jeong, D., and Chung, W., Activity monitoring from real-time triaxial accelerometer data using sensor network. In: International Conference on Control, Automation and Systems, ICCAS’07, pp. 2402–2406. IEEE, 2007.

  26. Igual, R., Medrano, C., and Plaza, I., Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12(66):1–66, 2013.

    Google Scholar 

  27. Bourke, A., O’donovan, K., and Olaighin, G., The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls. Med. Eng. Phys. 30(7):937–946, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Sposaro, F., and Tyson, G., ifall: an android application for fall monitoring and response. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6119–6122. IEEE, 2009.

  29. Anderson, D., Keller, J., Skubic, M., Chen, X., and He, Z., Recognizing falls from silhouettes. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS’06, pp. 6388–6391. IEEE, 2006.

  30. Cucchiara, R., Prati, A., and Vezzani, R., A multi-camera vision system for fall detection and alarm generation. Expert Syst. 24(5):334–345, 2007.

    Article  Google Scholar 

  31. Miaou, S.-G., Sung, P.-H., and Huang, C.-Y., A customized human fall detection system using omni-camera images and personal information. In: 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, pp. 39–42. IEEE, 2006.

  32. Jansen, B., and Deklerck, R., Context aware inactivity recognition for visual fall detection. In: Pervasive Health Conference and Workshops, pp. 1–4. IEEE, 2006.

  33. Liu, H., and Zuo, C., An improved algorithm of automatic fall detection. AASRI Procedia 1:353–358, 2012.

    Article  Google Scholar 

  34. Foroughi, H., Aski, B., and Pourreza, H., Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: 11th International Conference on Computer and Information Technology, ICCIT 2008, pp. 219–224. IEEE, 2008.

  35. Bian, Z.-P., Hou, J., Chau, L.-P., and Thalmann, M.N., Fall detection based on body part tracking using a depth camera. IEEE J. Biomed. Health Inf. 19(2):430–439, 2015.

    Article  Google Scholar 

  36. Stone, E., and Skubic, M., Fall detection in homes of older adults using the microsoft kinect. IEEE J. Biomed. Health Inf. 19(1):290–301, 2015.

    Article  Google Scholar 

  37. Kadri, F., Harrou, F., Chaabane, S., Sun, Y., and Tahon, C., Seasonal ARMA-based SPC charts for anomaly detection: application to emergency department systems. Neurocomputing 173:2102–2114, 2016.

    Article  Google Scholar 

  38. Cheng, W.-C., and Jhan, D.-M., Triaxial accelerometer-based fall detection method using a self-constructing cascade-adaboost-SVM classifier. IEEE J. Biomed. Health Inf. 17(2):411–419, 2013.

    Article  Google Scholar 

  39. Cola, G., Avvenuti, M., Vecchio, A., Yang, G.-Z., and Lo, B., An on-node processing approach for anomaly detection in gait. IEEE Sensors J. 15(11):6640–6649, 2015.

    Article  Google Scholar 

  40. Montgomery, D.C., Introduction to Statistical Quality Control. New York: Wiley, 2005.

    Google Scholar 

  41. Lucas, J., and Saccucci, M., Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1):1–12, 1990.

    Article  Google Scholar 

  42. Roberts, S.W., Control chart tests based on geometric moving averages. Technometrics 1(3):239–250, 1959.

    Article  Google Scholar 

  43. Harrou, F., Nounou, M., Nounou, H., and Madakyaru, M., PLS-based EWMA fault detection strategy for process monitoring. J. Loss Prev. Process Ind. 36:108–119, 2015.

    Article  Google Scholar 

  44. Harrou, F., and Nounou, M., Monitoring linear antenna arrays using an exponentially weighted moving average-based fault detection scheme. Syst. Sci. Control Eng. Open Access J. 2(1):433–443, 2014.

    Article  Google Scholar 

  45. Morton, A., Michael, W., Mary-Louise, M., Dobson, S., Looke, J., and Anna, S., The application of statistical process control charts to the detection and monitoring of hospital-acquired infections. J. Qual. Clin. Pract. 21(4):112–117, 2001.

    Article  CAS  PubMed  Google Scholar 

  46. Harrou, F., Nounou, M., and Nounou, H., A statistical fault detection strategy using PCA based EWMA control schemes. In: 9th Asian Control Conference (ASCC), pp. 1–4. IEEE, 2013.

  47. Rabhu, S., and Runger, G., Designing a multivariate ewma control chart. J. Qual. Technol. 29(1):8–15, 1997.

    Google Scholar 

  48. Hunter, J.S., The exponentially weighted moving average. J. Qual. Technol. 18(4):203–210, 1986.

    Google Scholar 

  49. Elgammal, A., Harwood, D., and Davis, L., Non-parametric model for background subtraction. In: Computer VisionUECCV 2000, pp. 751–767. Springer, 2000.

  50. Kim, K., Chalidabhongse, T., Harwood, D., and Davis, L., Real-time foreground–background segmentation using codebook model. Real-Time Imag. 11(3):172–185, 2005.

    Article  Google Scholar 

  51. Vapnik, V., The Nature of Statistical Learning Theory. Springer Science & Business Media, 2013.

  52. Yin, Z., and Hou, J., Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. Neurocomputing 174:643–650, 2016.

    Article  Google Scholar 

  53. Hsu, C.-W., and Lin, C.-J., A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2):415–425, 2002.

    Article  PubMed  Google Scholar 

  54. Hertz, J., Krogh, A., and Palmer, R., Introduction to the Theory of Neural Computation. Vol. 1, 1991.

  55. Duda, R., Hart, P., and Stork, D., Pattern Classification: Wiley, 2012.

  56. Cover, T., and Hart, P., Nearest neighbor pattern classification. IEEE Trans. Inf. theory 13(1):21–27, 1967.

    Article  Google Scholar 

  57. Kepski, M., and Kwolek, B., Fall detection using ceiling-mounted 3d depth camera. In: International Conference on Computer Vision Theory and Applications (VISAPP). Vol. 2, pp. 640–647. IEEE, 2014.

  58. Jordan, A., On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. Adv. Neural Inf. Process. Syst. 14:841, 2002.

    Google Scholar 

  59. Zhang, H., and Su, J., Naive bayes for optimal ranking. J. Exper. Theor. Artif. Intell. 20(2):79–93, 2008.

    Article  Google Scholar 

  60. Wang, W., Chen, S., and Qu, G., Incident detection algorithm based on partial least squares regression. Transp. Res. Part C: Emerg. Technol. 16(1):54–70, 2008.

    Article  Google Scholar 

  61. Zerrouki, N., and Houacine, A., Automatic classification of human body postures based on curvelet transform. In: Image Analysis and Recognition, pp. 329–337. Springer, 2014.

Download references

Acknowledgments

We would like to thank the reviewers of this article for their insightful comments, which helped us to greatly improve its quality. The authors (Nabil Zerrouki and Amrane Houacine) would like to thank the LCPTS laboratory, Faculty of Electronics and Informatics, University of Sciences and Technology HOUARI BOUMEDIENE (USTHB) for the continued support during the research. This publication is based upon work supported by King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2015-CRG4-2582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouzi Harrou.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerrouki, N., Harrou, F., Sun, Y. et al. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection. J Med Syst 40, 284 (2016). https://doi.org/10.1007/s10916-016-0639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0639-6

Keywords

Navigation