Journal of Medical Systems

, 40:194 | Cite as

Using Non-Traditional Interfaces to Support Physical Therapy for Knee Strengthening

  • Andrea Torres
  • Gustavo López
  • Luis A. Guerrero
Patient Facing Systems
Part of the following topical collections:
  1. Advances in Ambient Intelligence for Health (AmIHEALTH 2015)


Physical therapy consists mainly in the execution of rehabilitation processes that aim to help overcome injuries, as well as develop, maintain, or restore maximum body movement. Knee rehabilitation is one kind of physical therapy that requires daily exercises which could be considered monotonous and boring by the patients, discouraging their improvement. This is coupled with the fact that most physical therapists assess exercise performance through verbal and visual means with mostly manual measurements, making it difficult to constantly verify and validate if patients perform the exercises correctly. This article describes a physical therapy monitoring system that uses wearable technology to assess exercise performance and patient progress. This wearable device is able to measure and transfer the movement’s data from the patient’s limb to a mobile device. Moreover, the user interface is a game, which provides an entertaining approach to therapy exercising. In this article, it is shown that the developed system significantly increases daily user engagement in rehabilitation exercises, through a gameplay that matches physical therapy requirements for knee rehabilitation, as well as offering useful quantitative information to therapists.


Physical therapy Wearable computing Medical informatics Health informatics 



This work was partially supported by CITIC-UCR (Centro de Investigaciones en Tecnologías de la Información y Comunicación) grant No. 834-B4-159, the School of Computer Science and Informatics at Universidad de Costa Rica (ECCI-UCR) and the School of Health Technologies at Universidad de Costa Rica.


  1. 1.
    World Confederation for Physical Therapy, Description of physical therapy: Policy statement. World Confed. Phys. Ther.:1–12, 2011.Google Scholar
  2. 2.
    Marrero, R.C.M., Rull, I.M., Cunillera, M.P.: Biomecánica clínica de los tejidos y las articulaciones del aparato locomotor. Elsevier España 2005.Google Scholar
  3. 3.
    Marrero, Rodrigo Miralles, C. Rull, I.M.: Biomecánica clínica de las patologías del aparato locomotor. Elsevier España 2007.Google Scholar
  4. 4.
    Schenk, P., Colombo, G., Maier, I.: New Technology in Rehabilitation: Possibilities and Limitations. In: Converging Clinical and Engineering Research on Neurorehabilitation. pp. 963–967. Springer 2013.Google Scholar
  5. 5.
    Geurts, L., Vanden Abeele, V., Husson, J., Windey, F., Van Overveldt, M., Annema, J.-H., Desmet, S.: Digital games for physical therapy. In: Proceedings of the fifth international conference on Tangible, embedded, and embodied interaction - TEI ‘11. p. 117. ACM Press, New York, New York, USA 2011.Google Scholar
  6. 6.
    Nielsen J.: Usability Engineering. Elsevier 1994.Google Scholar
  7. 7.
    Arvola, M., Artman, H.: Interaction Walkthroughs and Improvised Role Play. In: Design and semantics of form and movement. Technische Universiteit Eindhoven 2006.Google Scholar
  8. 8.
    Terada, H., Zhu, Y., Horiguchi, K., Nakamura, M., Takahashi, R.: Development of a Wearable Assist Robot for Walk Rehabilitation After Knee Arthroplasty Surgery. In: Advances in Mechanisms Design. pp. 65–71. Springer 2012.Google Scholar
  9. 9.
    Jinfu, Li Bingquan, Shen Chee-Meng, Chew: FAT based adaptive control for a lower extremity rehabilitation device: Simulation results. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. pp. 828–832. IEEE 2013.Google Scholar
  10. 10.
    Papi, E., Spulber, I., Kotti, M., Georgiou, P., and McGregor, A.H., Smart Sensing System for Combined Activity Classification and Estimation of Knee Range of Motion. IEEE Sens. J. 15:5535–5544, 2015.CrossRefGoogle Scholar
  11. 11.
    Haladjian, J., Hodaie, Z., Xu, H., Yigin, M., Bruegge, B., Fink, M., Hoeher, J.: KneeHapp. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers - UbiComp ‘15. pp. 181–184. ACM Press, New York, New York, USA 2015.Google Scholar
  12. 12.
    Ayoade, M., Baillie, L.: A novel knee rehabilitation system for the home. In: Proceedings of the 32nd annual ACM conference on Human factors in computing systems - CHI ‘14. pp. 2521–2530. ACM Press, New York, New York, USA 2014.Google Scholar
  13. 13.
    Muñoz, D., Pruett, A., Williams, G.: Knee. In: Proceedings of the extended abstracts of the 32nd annual ACM conference on Human factors in computing systems - CHI EA ‘14. pp. 209–214. ACM Press, New York, New York, USA 2014.Google Scholar
  14. 14.
    Chen, P.-C., Huang, C.-N., Chen, I.-C., Chan, C.-T.: A Rehabilitation Exercise Assessment System Based on Wearable Sensors for Knee Osteoarthritis. In: Inclusive Society: Health and Wellbeing in the Community, and Care at Home. pp. 267–272. Springer 2013.Google Scholar
  15. 15.
    Ananthanarayan, S., Sheh, M., Chien, A., Profita, H., Siek, K.: Pt Viz. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ‘13. p. 1247. ACM Press, New York, New York, USA 2013.Google Scholar
  16. 16.
    Saito, H., Watanabe, T., Arifin, A.: Ankle and Knee Joint Angle Measurements during Gait with Wearable Sensor System for Rehabilitation. In: World Congress on Medical Physics and Biomedical Engineering. pp. 506–509. Springer Berlin Heidelberg 2009.Google Scholar
  17. 17.
    Motoi, K., Kuwae, Y., Taniguchi, S., Wakugawa, M., Yuji, T., Higashi, Y., Fujimoto, T., Ogawa, M., Tanaka, S., Yamakoshi, K.: Development of a New Wearable Monitoring System for Posture Changes and Activities and its Application to Rehabilitation. In: International Federation for Medical and Biological Engineering Proceedings. pp. 142–145. Springer Berlin Heidelberg 2009.Google Scholar
  18. 18.
    Adafruit: Flora 9-DOF Accelerometer/Gyroscope/Magnetometer - LSM9DS0.Google Scholar
  19. 19.
    Pio, R., Euler angle transformations. IEEE Trans. Automat. Contr. 11:707–715, 1966.CrossRefGoogle Scholar
  20. 20.
    Prensky, M., The motivation of gameplay. Horiz. 10:5–11, 2002.CrossRefGoogle Scholar
  21. 21.
    Lohse, K., Shirzad, N., Verster, A., Hodges, N., and Van der Loos, H.F.M., Video games and rehabilitation. J. Neurol. Phys. Ther. 37:166–175, 2013.CrossRefPubMedGoogle Scholar
  22. 22.
    Sweetser, P., Wyeth, P.: GameFlow. Comput. Entertain. 3, 3 2005.Google Scholar
  23. 23.
    Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M., and Martin, R., Design for wearability. In: Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215). IEEE Comput. Soc:116–122, 1998.Google Scholar
  24. 24.
    Demers, L., Weiss-Lambrou, R., Ska, B.: The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): an overview and recent progress. In: Technology and Disability. pp. 101–105. IOS Press 2002.Google Scholar
  25. 25.
    Day, H., Jutai, J.: Measuring the psychosocial impact of assistive devices: The PIADS. In: Canadian Journal of Rehabilitation. pp. 159–168 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Programa de Posgrado en Computación e InformáticaUniversidad de Costa RicaSan JoséCosta Rica
  2. 2.Centro de Investigaciones en Tecnologías de la Información y ComunicaciónUniversidad de Costa RicaSan JoséCosta Rica
  3. 3.Escuela de Ciencias de la Computación e InformáticaUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations