Advertisement

Journal of Medical Systems

, 39:143 | Cite as

Blood Pressure Drop Prediction by using HRV Measurements in Orthostatic Hypotension

  • Giovanna Sannino
  • Paolo Melillo
  • Saverio Stranges
  • Giuseppe De Pietro
  • Leandro Pecchia
Systems-Level Quality Improvement
Part of the following topical collections:
  1. UCAmI & IWAAL 2014

Abstract

Orthostatic Hypotension is defined as a reduction of systolic and diastolic blood pressure within 3 minutes of standing, and may cause dizziness and loss of balance. Orthostatic Hypotension has been considered an important risk factor for falls since 1960. This paper presents a model to predict the systolic blood pressure drop due to orthostatic hypotension, relying on heart rate variability measurements extracted from 5 minute ECGs recorded before standing. This model was developed and validated with the leave-one-out cross-validation technique involving 10 healthy subjects, and finally tested with an additional 5 healthy subjects, whose data were not used during the training and cross-validation process. The results show that the model predicts correctly the systolic blood pressure drop in 80 % of all experiments, with an error rate below the measurement error of a sphygmomanometer digital device.

Keywords

Drop blood pressure prediction Heart rate variability Orthostatic hypotension Falls in later life 

References

  1. 1.
    Gilman, S., Low, P., Quinn, N., Albanese, A., Ben-Shlomo, Y., Fowler, C., Kaufmann, H., Klockgether, T., Lang, A., Lantos, P., Consensus statement on the diagnosis of multiple system atrophy. J. Neurol. Sci. 163(1):94–98, 1999.CrossRefPubMedGoogle Scholar
  2. 2.
    Caird, F.I., Andrews, G.R., Kennedy, R.D., Effect of posture on blood pressure in the elderly. Br. Heart J. 35(5):527–530, 1973.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Mader, S.L., Orthostatic hypotension. Med. Clin. North Am. 73(6):1337–1349, 1989.PubMedGoogle Scholar
  4. 4.
    Sheldon, J.H., On the natural history of falls in old age. Br. Med. J. 2(5214):1685–1690, 1960.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Ooi, W. L., Hossain, M., Lipsitz, L. A., The association between orthostatic hypotension and recurrent falls in nursing home residents. Am. J. Med. 108(2):106–111, 2000.CrossRefPubMedGoogle Scholar
  6. 6.
    Gates, S., Fisher, J.D., Cooke, M.W., Carter, Y.H., Lamb, S.E., Multifactorial assessment and targeted intervention for preventing falls and injuries among older people in community and emergency care settings: systematic review and meta-analysis. BMJ: Br. Med. J. 336:130–133, 2008.CrossRefGoogle Scholar
  7. 7.
    Vaddadi, G., Lambert, E., Corcoran, S.J., Esler, M.D., Postural syncope: mechanisms and management. Med. J. Aust. 187(5):299, 2007.PubMedGoogle Scholar
  8. 8.
    Luukinen, H., Koski, K., Laippala, P., Airaksinen, K.E., Orthostatic hypotension and the risk of myocardial infarction in the home-dwelling elderly. J. Intern. Med. 255(4):486–493, 2004.CrossRefPubMedGoogle Scholar
  9. 9.
    Rose, K.M., Eigenbrodt, M.L., Biga, R.L., Couper, D.J., Light, K.C., Sharrett, A.R., Heiss, G., Orthostatic hypotension predicts mortality in middle-aged adults: the Atherosclerosis Risk In Communities (ARIC) Study. Circulation 114(7):630–636, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Raiha, I., Luutonen, S., Piha, J., Seppanen, A., Toikka, T., Sourander, L., Prevalence, predisposing factors, and prognostic importance of postural hypotension. Arch. Intern. Med. 155(9):930–935, 1995.CrossRefPubMedGoogle Scholar
  11. 11.
    Luutonen, S., Neuvonen, P., Ruskoaho, H., Raiha, I., Rajala, T., Antila, K., Sourander, L., The role of potassium in postural hypotension: electrolytes and neurohumoral factors in elderly hypertensive patients using diuretics. J. Intern. Med. 237(4):375–380, 1995.CrossRefPubMedGoogle Scholar
  12. 12.
    Lahiri, M.K., Kannankeril, P.J., Goldberger, J.J., Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J. Am. Coll. Cardiol. 51(18):1725–1733, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Lombardi, F., Malliani, A., Pagani, M., Cerutti, S., Heart rate variability and its sympatho-vagal modulation. Cardiovasc. Res. 32(2):208–216, 1996.CrossRefPubMedGoogle Scholar
  14. 14.
    Electrophysiology, Task, Force, of, the, European, Society, of, Cardiology, the, North, American, Society, of and Pacing Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 93(5):1043–1065, 1996.Google Scholar
  15. 15.
    Streeten, D.H., Orthostatic intolerance. A historical introduction to the pathophysi- ological mechanisms. Am. J. Med. Sci. 317(2):78–87, 1999.CrossRefPubMedGoogle Scholar
  16. 16.
    Kawaguchi, T., Uyama, O., Konishi, M., Nishiyama, T., Iida, T., Orthostatic hypotension in elderly persons during passive standing: a comparison with young persons. J. Gerontol. Ser. A, Biol. Sci. Med. Sci. 56(5): M273–280, 2001.CrossRefGoogle Scholar
  17. 17.
    Koschke, M., Boettger, M.K., Schulz, S., Berger, S., Terhaar, J., Voss, A., Yeragani, V.K., Bar, K. J., Autonomy of autonomic dysfunction in major depression. Psychosom. Med. 71(8):852–860, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Kemp, A.H., Quintana, D.S., Gray, M.A., Felmingham, K.L., Brown, K., Gatt, J.M., Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol. Psychiatry 67 (11):1067–1074, 2010.CrossRefPubMedGoogle Scholar
  19. 19.
    Niskanen, J.P., Tarvainen, M.P., Ranta-Aho, P.O., Karjalainen, P.A., Software for advanced HRV analysis. Comput. Methods Program. Biomed. 76(1):73–81, 2004.CrossRefGoogle Scholar
  20. 20.
    Naschitz, J.E., and Rosner, I., Orthostatic hypotension: framework of the syndrome. Postgrad. Med. J. 83(983):568–574, 2007.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Melillo, P., Izzo, R., De Luca, N., Pecchia, L., Heart rate variability and target organ damage in hypertensive patients. BMC Cardiovasc. Disord. 12(1):105, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Holland, P.W., and Welsch, R.E., Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods 6(9):813–827, 1977.CrossRefGoogle Scholar
  23. 23.
    Browne, M.W., Cross-validation methods. J. Math. Psychol. 44(1):108–132, 2000.CrossRefPubMedGoogle Scholar
  24. 24.
    Sannino, G., Melillo, P., De Pietro, G., Stranges, S., Pecchia, L.: To What Extent It Is Possible to Predict Falls due to Standing Hypotension by Using HRV and Wearable Devices? Study Design and Preliminary Results from a Proof-of-Concept Study. In: Ambient Assisted Living and Daily Activities, pp. 167–170. Springer International Publishing (2014)Google Scholar
  25. 25.
    Yang, C.C., and Hsu, Y.L., A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8):7772–7788, 2010.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Mariani, B., Rochat, S., Bula, C.J., Aminian, K., Heel and toe clearance estimation for gait analysis using wireless inertial sensors. IEEE Trans. Biomed. Eng. 59(11):3162–3168, 2012.CrossRefPubMedGoogle Scholar
  27. 27.
    Zigel, Y., Litvak, D., Gannot, I., A method for automatic fall detection of elderly people using floor vibrations and sound Proof of concept on human mimicking doll falls. IEEE Trans. Biomed. Eng. 56(12):2858–2867, 2009.CrossRefPubMedGoogle Scholar
  28. 28.
    Kosse, N.M., Brands, K., Bauer, J.M., Hortobagyi, T., Lamoth, C.J.C., Sensor technologies aiming at fall prevention in institutionalized old adults: a synthesis of current knowledge. Int. J. Med. Inf. 82(9):743–752, 2013.CrossRefGoogle Scholar
  29. 29.
    Gates, S., Smith, L.A., Fisher, J.D., Lamb, S.E, Systematic review of accuracy of screening instruments for predicting fall risk among independently living older adults. J. Rehabil. Res. Dev. 45(8):1105–16, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Giovanna Sannino
    • 1
  • Paolo Melillo
    • 2
  • Saverio Stranges
    • 3
  • Giuseppe De Pietro
    • 1
  • Leandro Pecchia
    • 4
  1. 1.Institute of High Performance Computing and Networking (ICAR - CNR)NaplesItaly
  2. 2.Multidisciplinary Department of Medical, Surgical and Dental SciencesSecond Univiversity of NaplesNaplesItaly
  3. 3.Department of Population Health, Luxembourg Institute of Health (LIH)StrassenLuxembourg
  4. 4.School of EngineeringUniversity of WarwickWarwickUK

Personalised recommendations