Journal of Medical Systems

, 39:118 | Cite as

Blood Smear Image Based Malaria Parasite and Infected-Erythrocyte Detection and Segmentation

  • Meng-Hsiun Tsai
  • Shyr-Shen Yu
  • Yung-Kuan Chan
  • Chun-Chu Jen
Transactional Processing Systems
Part of the following topical collections:
  1. Smart Living in Healthcare and Innovations


In this study, an automatic malaria parasite detector is proposed to perceive the malaria-infected erythrocytes in a blood smear image and to separate parasites from the infected erythrocytes. The detector hence can verify whether a patient is infected with malaria. It could more objectively and efficiently help a doctor in diagnosing malaria. The experimental results show that the proposed method can provide impressive performance in segmenting the malaria-infected erythrocytes and the parasites from a blood smear image taken under a microscope. This paper also presents a weighted Sobel operation to compute the image gradient. The experimental results demonstrates that the weighted Sobel operation can provide more clear-cut and thinner object contours in object segmentation.


Malaria parasite Blood smear image Edge detection Image segmentation 


Authors’ Contributions

MHT and YKC conceived the study. SSY designed the approach and performed the computational analysis with CCJ. MHT and YKC supervised the work and tested the program. MHT, SSY, YKC and CCJ wrote the manuscript. MHT prepared the samples and collected the data. MHT and YKC contributed analyzing experimental studies. All authors read and approved the final manuscript. YKC and SSY contributed equally and are the correspondents as well as listed in alphabetical order.


  1. 1.
    Canny, J., A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8(6):679–698, 1986.CrossRefGoogle Scholar
  2. 2.
    Carlone, P., Palazzo, G. S., and Pasquino, R., Pultrusion manufacturing process development: Cure optimization by hybrid computational methods. Comput. Math. Appl. 53:1464–1471, 2007.CrossRefGoogle Scholar
  3. 3.
    Chan, Y. K., Tsai, M. H., Huang, D. C., and Zheng, Z. H., Leukocyte nucleus segmentation and nucleus lobe counting. BMC Bioinf 11(558):1–18, 2010.Google Scholar
  4. 4.
    Chiodini, P. L., Moody, A. H., and Manser, D. W., Atlas of medical helminthology and protozoology, 4th edition. Churchill Livingstone, Edinburgh, New York, 2001.Google Scholar
  5. 5.
    Cross, C., Malaria Control Measure. (, November 2004.
  6. 6.
    Gelasca, E. D., Byun, J. B., Obara, and Manjunath, B. S., Evaluation and benchmark for biological image segmentation. 15th IEEE International Conference on Image Processing (ICIP 2008), San Diego, CA, USA, pp. 1816–1819, 2008.Google Scholar
  7. 7.
    Gonzalez, R. C., and Woods, R. E., Digital image processing, 3rd edition. Prentice Hall, Upper Saddle River, N.J, 2008.Google Scholar
  8. 8.
    Haupt, R. L., and Haupt, S. E., Practical genetic algorithms, vol. 2. John Wiley, Hoboken, N.J., 2004.Google Scholar
  9. 9.
    Kumar, S., Ong, S. H., Ranganath, S., Ong, T. C., and Chew, F. T., A rule-based approach for robust clump splitting. Pattern Recogn. 39(6):1088–1098, 2006.CrossRefGoogle Scholar
  10. 10.
    Le, M. T., Bretschneider, T. R., Kuss, C., and Preiser P. R., A novel semi-automatic image processing approach to determine plasmodium falciparum parasitemia in giemsa-stained thin blood smears. BMC Cell Biol. 9(15), 2008.Google Scholar
  11. 11.
    Moody, A. H., and Chiodini, P. L., Methods for the detection of blood parasites. Clin. Lab. Haematol. 22(4):189–201, 2000.CrossRefPubMedGoogle Scholar
  12. 12.
    Nasir, A. S. A., Mashor, M. Y., and Mohamed, Z., Colour image segmentation approach for detection of malaria parasites using various colour models and k-means clustering. WSEAS Trans. Biol. Biomed. 1(10):41–55, 2013.Google Scholar
  13. 13.
    Nixon, M. S., and Aguado, A. S., Feature extraction and image processing, 1st edition. Newnes, Oxford, 2002.Google Scholar
  14. 14.
    Otsu, N., A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1):62–66, 1979.CrossRefGoogle Scholar
  15. 15.
    Payne, D., Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull. World Health Organ. 66(5):621–626, 1988.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Perez-Jorge, E. V., and Herchline, T., Malaria: eMedicine Infectious Diseases. (
  17. 17.
    Ross, N. E., Pritchard, C. J., Rubin, D. M., and Dusé, A. G., Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med. Biol. Eng. Comput. 44(5):427–436, 2006.CrossRefPubMedGoogle Scholar
  18. 18.
    Ruberto, C. D., Dempster, A., Khan, S., and Jarra, B., Analysis of infected blood cell images using morphological operators. Image Vis. Comput. 20(2):133–146, 2002.CrossRefGoogle Scholar
  19. 19.
    Sezgin, M., and Sankur, B., Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1):146–165, 2004.CrossRefGoogle Scholar
  20. 20.
    Shi, Y. Q., and Sun, H., Image and video compression for multimedia engineering fundamentals, algorithms, standards. 2nd ed. CRC Press, Taylor & Francis Group, 2008.Google Scholar
  21. 21.
    Sio, S. W. S., Sun, W., Kumar, S., Bin, W. Z., Tan, S. S., Ong, S. H., Kikuchi, H., Oshima, Y., and Tan, K. S. W., MalariaCount: An image analysis-based program for the accurate determination of parasitemia. J. Microbiol. Methods 68(1):11–18, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Trampuz, A., Jereb, M., Muzlovic, I., and Prabhu, R. M., Clinical review: Severe malaria. Crit. Care 7:315–323, 2003.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Tsutsumi, Y., Case 206, Malaria Falciparum. (
  24. 24.
    Vallejo, A. F., Chaparro, P. E., Benavides, Y., Álvarez, Á., Quintero, J. P., Padilla, J., Arévalo-Herrera, M., and Herrera, S., High prevalence of sub-microscopic infections in Colombia. Malar. J. 14(201), May 2015, doi: 10.1186/s12936-015-0711-6.
  25. 25.
    World Health Organization, World Malaria Report 2014, Geneva: World Health Organization, 2014.Google Scholar
  26. 26.
    Zuiderveld, K., Contrast limited adaptive histogram equalization. In: Heckbert, P. (Ed.) Graphics gems IV, Academic Press, pp. 474–485, 1994.Google Scholar
  27. 27.
    Zhou, Z., Wu, S., Chang, K. J., Chen, W. R., Chen, Y. S., Kuo, W. H., Lin, C. C., and Tsui, P. H., Classification of benign and malignant breast tumors in ultrasound images with posterior acoustic shadowing using half-contour features. J. Med. Biol. Eng. 35:178–187, 2015.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Management Information SystemsNational Chung Hsing UniversityTaichung CityRepublic of China
  2. 2.Department of Computer Science and EngineeringNational Chung Hsing UniversityTaichung CityRepublic of China

Personalised recommendations