Development of a Novel Scheme for Long-Term Body Temperature Monitoring: A Review of Benefits and Applications

  • David Cuesta-Frau
  • Manuel Varela-Entrecanales
  • Raul Valor-Perez
  • Borja Vargas
Non-invasive Diagnostic Systems
Part of the following topical collections:
  1. Mobile Systems


Body temperature is a health or disease marker that has been in clinical use for centuries. The threshold currently applied to define fever, with small variations, is 38 °C. However, current approaches do not provide a full picture of the thermoregulation process and its correlation with disease. This paper describes a new non-invasive body temperature device that improves the understanding of the pathophysiology of diseases by integrating a variety of temperature data from different body locations. This device enables to gain a deeper insight into fever, endogenous rhythms, subject activity and ambient temperature to provide anticipatory and more efficient treatments. Its clinical use would be a big step in the overcoming of the anachronistic febrile/afebrile dichotomy and walking towards a system medicine approach to certain diseases. This device has already been used in some clinical applications successfully. Other possible applications based on the device features and clinical requirements are also described in this paper.


Body temperature Continuous monitoring Fever Medical diagnosis Nursing Thermometer 


  1. 1.
    Gai, M., Merlo, I., Dellepiane, S., Cantaluppi, V., Leonardi, G., Fop, F., Guarena, C., Grassi, G., and Biancore, L., Glycemic pattern in diabetic patients on hemodialysis: Continuous Glucose Monitoring (CGM) analysis. Blood Purif. 38(1):68–73 , 2014.CrossRefGoogle Scholar
  2. 2.
    Kondziella, D., Friberg, C.K., Wellwood, I., Reiffurth, C., Fabricius, M., and Dreier, J.P.: Continuous EEG monitoring in aneurysmal subarachnoid hemorrhage: A systematic review. Neurocrit. Care (2014)Google Scholar
  3. 3.
    Ciccone, A., Celani, M.G., Chiaramonte, R., Rossi, C., and Righetti, E., Continuous versus intermittent physiological monitoring for acute stroke. Cochrane Database Syst. Rev. 31, 2013.Google Scholar
  4. 4.
    Kushimoto, S., Yamanouchi, S., Endo, T., Sato, T., Nomura, R., Fujita, M., Kudo, D., Omura, T., Miyagawa, N., and Sato, T., Body temperature abnormalities in non-neurological critically ill patients: A review of the literature. J. Intensive Care 2, 2014.Google Scholar
  5. 5.
    Mc Callum, L., and Higgings, D., Measuring body temperature. Nursing Times 108:20–22, 2012.Google Scholar
  6. 6.
    Varela, M., Ruiz-Esteban, R., Martinez-Nicolas, A., Cuervo-Arango, A., Barros, C., and Delgado, E.G., Catching the spike and tracking the flow: Holter-temperature monitoring in patients admitted in a general internal medicine ward. Int. J. Clin. Pract. 65(12):1283–1288, 2011.CrossRefGoogle Scholar
  7. 7.
    Lopes, F., Peres, D., Bross, A., Melot, C., and Vincent, J.L., Serial evaluation of the SOFA score to predict outcome in critically ill patients. J. Am. Med. Assoc. 286:1754–1758, 2001.CrossRefGoogle Scholar
  8. 8.
    Vincent, J.L., and Moreno, R., Clinical review: Scoring systems in the critically ill. Crit. Care, 14, 2010.Google Scholar
  9. 9.
    Sund-Levander, M., and Grodzinsky, E., Time for a change to assess and evaluate body temperature in clinical practice. Int. J. Nurs. Pract. 15:241–249, 2009.CrossRefGoogle Scholar
  10. 10.
    Cuesta-Frau, D., Varela, M., Aboy, M., and Miro, P., Description of a portable wireless device for body temperature acquisition and analysis. Sensors 9(10):7648–7663, 2009.CrossRefGoogle Scholar
  11. 11.
    Varela, M., Cuesta-Frau, D., Madrid, J.A., Churruca, J., Miro-Matinez, P., Ruiz, R., and Marinez, C., Holter monitoring of central peripheral temperature: Possible uses and feasibility study in outpatient settings. J. Clin. Monit. Comput. 4(23):209–216, 2009.CrossRefGoogle Scholar
  12. 12.
    Jordan, J., Miro, P., Cuesta-Frau, D., Varela, M., and Vargas B.: Aplicacion de analisis multivariante para la deteccion de estados prefebriles en pacientes ingresados (in Spanish), XXXIV Congreso Nacional de Estadistica e Investigacion Operativa, Castellon (Spain) (2013)Google Scholar
  13. 13.
    Richman, J., and Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6):H2039–2049, 2000.Google Scholar
  14. 14.
    Young, P., Saxena, M., Eastwood, G.M., Bellomo, R., and Beasley, R., Fever and fever management among intensive care patients with known or suspected infection: A multicentre prospective cohort study. Crit. Care Resusc. 13:97–102 , 2011.Google Scholar
  15. 15.
    Drewry, A.M., Fuller, B.M., Bailey, T.C., and Hotchkiss, R.S., Body temperature patterns as a predictor of hospital-acquired sepsis in afebrile adult intensive care unit patients: A case-control study. Crit. Care,17, 2013.Google Scholar
  16. 16.
    Musher, D., Fainstein, V., Young, E., and Pruett, T., Fever patterns. Their lack of significance. Arch. Intern. Med. 139(11):1225–8, 1979.CrossRefGoogle Scholar
  17. 17.
    Varela, M., Calvo, M., Chana, M., Gomez-Mestre, I., Asensio, R., and Galdos, P., Clinical implications of temperature curve complexity in critically ill patients. Crit. Care Med. 33(12):2764–2771, 2005.CrossRefGoogle Scholar
  18. 18.
    Varela, M., Churruca, J., Gonzalez, A., Martin, A., Ode, J., and Galdos, P., Temperature curve complexity predicts survival in critically ill patients. Am. J. Respir. Crit. Care Med. 174(3):290–298, 2006.CrossRefGoogle Scholar
  19. 19.
    Cuesta-Frau, D., Varela, M., Miro, P., Galdos, P., Abasolo, D., Hornero, R., and Aboy, M., Predicting survival in critical patients by use of body temperature regularity measurement based on Approximate Entropy. Med. Biol. Eng. Computing 45:671–678, 2007.CrossRefGoogle Scholar
  20. 20.
    Mackiowak, P. Temperature regulation and the pathogenesis of fever, Principles and Practice of Infectious Diseases, pp. 765–778. New York: Churchill Livingston Elsevier, 2010.Google Scholar
  21. 21.
    Cherbuin N., and Brinkman C., Cognition is cool: Can hemispheric activation be assessed by tympanic membrane thermometry? Brain Cogn. 54:228–231, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • David Cuesta-Frau
    • 1
  • Manuel Varela-Entrecanales
    • 2
  • Raul Valor-Perez
    • 3
  • Borja Vargas
    • 4
  1. 1.Technological Institute of InformaticsPolytechnic University of Valencia, Alcoi CampusAlcoiSpain
  2. 2.Department of Internal MedicineTeaching Hospital of MostolesMadridSpain
  3. 3.Innovatec Sensing and CommunicationsAlcoiSpain
  4. 4.Biomedical Science FacultyEuropean University of MadridMadridSpain

Personalised recommendations