Skip to main content
Log in

An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Most of the retinal blood vessel segmentation approaches use low level features, resulting in segmenting non-vessel structures together with vessel structures in pathological retinal images. In this paper, a new segmentation method based on high level features is proposed which can process the structure of vessel and non-vessel independently. In this method, segmentation is done in two steps. First, using low level features segmentation is accomplished. Second, using high level features, the non-vessel components are removed. For evaluation, STARE database is used which is publicly available in this field. The results show that the proposed method has 0.9536 accuracy and 0.0191 false positive average on all images of the database and 0.9542 accuracy and 0.0236 false positive average on pathological images. Therefore, the proposed approach shows acceptable accuracy on all images compared to other state of the art methods, and the least false positive average on pathological images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niemeijer, M., Abramoff, M., and van Ginneken, B., Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans. Med. Imag 26:116–127, 2007.

    Article  Google Scholar 

  2. Fleming, A., Philip, S., Goatman, K., Olson, J., and Sharp, P., Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Imag 25:1223–1232, 2006.

    Article  Google Scholar 

  3. Nayak, J., Bhat, P. S., Acharya, U. R., Lim, C. M., and Kagathi, M., Automated identification of diabetic retinopathy stages using digital fundus images. J. Med. Syst. 32:107–115, 2008.

    Article  Google Scholar 

  4. Akram, U. M., and Khan, S. A., Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J. Med. Syst. 36:3151–3162, 2012.

    Article  Google Scholar 

  5. Niemeijer, M., Abràmoff, M. D., and van Ginneken, B., Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans. Med. Imag 28:775–785, 2009.

    Article  Google Scholar 

  6. Frank, R.N., “Diabetic retinopathy,” Prog. Retin Eye Res., pp. 361–392, 1995.

  7. Faust, O., Acharya, U. R., Ng, E. Y. K., Ng, K. H., and Suri, J. S., Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review. J. Med. Syst. 36:145–157, 2012.

    Article  Google Scholar 

  8. Yun, W. L., Acharya, R., Venkatesh, Y. V., Min, C. C. L. C., and Ng, E. Y. K., Identification of different stages of diabetic retinopathy. Inf. Sci. 178:106–121, 2008.

    Article  Google Scholar 

  9. Williams, R., et al., Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye 18:963–983, 2004.

    Article  Google Scholar 

  10. Reza, A. W., and Eswaran, C., A decision support system for automatic screening of non-proliferative diabetic retinopathy. J. Med. Syst. 35:17–24, 2011.

    Article  Google Scholar 

  11. Rajendra Acharya, U., Ng, E. Y. K., Jen-Hong Tan, S., Sree, V., and Ng, K.-H., An integrated index for the identification of diabetic retinopathy stages using texture parameters. J. Med. Syst. 36:2011–2020, 2012.

    Article  Google Scholar 

  12. Mookiah, M. R. K., et al., Computer-aided diagnosis of diabetic retinopathy: A review. Comput. Biol. Med. 43:2136–2155, 2013.

    Article  Google Scholar 

  13. Winder, R. J., Morrow, P. J., McRitchie, I. N., Bailie, J. R., and Hart, P. M., Algorithms for digital image processing in diabetic retinopathy. Comput. Med. Imaging Graph. 33:608–622, 2009.

    Article  Google Scholar 

  14. Teng, T., Lefley, M., and Claremont, D., Progress towards automated diabetic ocular screening: A review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Comput. 40(1):2–13, 2002.

    Article  Google Scholar 

  15. Hoover, A., Kouznetsova, V., and Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag 19:203–210, 2000.

    Article  Google Scholar 

  16. Fraz, M., et al., Blood vessel segmentation methodologies in retinal images— a survey. Comput. Methods Prog. Biomed. 108:407–433, 2012.

    Article  Google Scholar 

  17. Zhang, B., Zhang, L., Zhang, L., and Karray, F., Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40:438–445, 2010.

    Article  Google Scholar 

  18. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag 8:263–269, 1989.

    Article  Google Scholar 

  19. Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:262–267, 2007.

    Article  Google Scholar 

  20. Zhang, L., Li, Q., You, J., and Zhang, D., A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans. Inf. Technol. Biomed. 13:528–534, 2009.

    Article  Google Scholar 

  21. Li, Q., You, J., and Zhang, D., Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst. Appl. 39:7600–7610, 2012.

    Article  Google Scholar 

  22. Fathi, A., and Naghsh-Nilchi, A. R., Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed. Signal Process. Control 8:71–80, 2013.

    Article  Google Scholar 

  23. Nguyen, U. T. V., Bhuiyan, A., Park, L. A. F., and Ramamohanarao, K., An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46:703–715, 2013.

    Article  Google Scholar 

  24. Vlachos, M., and Dermatas, E., Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34:213–227, 2010.

    Article  Google Scholar 

  25. Yin, Y., Ade, M., and Bourennane, S., Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn. 45:1235–1244, 2012.

    Article  MATH  Google Scholar 

  26. Delibasis, K. K., Kechriniotis, A. I., Tsonos, C., and Assimakis, N., Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput. Methods Prog. Biomed 100:108–122, 2010.

    Article  Google Scholar 

  27. Adel, M., Moussaoui, A., Rasigni, M., Bourennane, S., and Hamami, L., Statistical-based tracking technique for linear structures detection: application to vessel segmentation in medical images. IEEE Signal Process. Lett. 17:555–558, 2010.

    Article  Google Scholar 

  28. Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., and van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag 23:501–509, 2004.

    Article  Google Scholar 

  29. Soares, J. V. B., Leandro, J. J. G., CesarJr, R. M., Jelinek, H. F., and Cree, M. J., Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag 25:1214–1222, 2006.

    Article  Google Scholar 

  30. Ricci, E., and Perfetti, R., Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imag 26:1357–1365, 2007.

    Article  Google Scholar 

  31. Lupascu, C. A., Tegolo, D., and Trucco, E., retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14:1267–1274, 2010.

    Article  Google Scholar 

  32. Marín, D., Aquino, A., Gegúndez-Arias, M. E., and Bravo, J. M., A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag 30:146–158, 2011.

    Article  Google Scholar 

  33. You, X., Peng, Q., Yaun, Y., Cheng, Y., and Lei, J., Segmentation of retinal blood vessels sing the radial projection and semi-supervised approach. Pattern Recogn. 44:2314–2324, 2011.

    Article  Google Scholar 

  34. Garg, S., Sivaswamy, J., Chandra, S., “Unsupervised curvature-based retinal vessel segmentation,” Proc. IEEE Int. Symp. BioMed. Imaging, pp. 344–347, 2007.

  35. Kande, G. B., Subbaiah, P. V., and Savithri, T. S., Unsupervised Fuzzy Based Vessel Segmentation In Pathological Digital Fundus Images. J. Med. Syst. 34:849–858, 2010.

    Article  Google Scholar 

  36. Ng, J., et al., Maximum likelihood estimation of vessel parameters from scale space analysis. Image Vis. Comput. 28:55–63, 2010.

    Article  Google Scholar 

  37. Mendonca, A. M., and Campilho, A., Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag 25:1200–1213, 2006.

    Article  Google Scholar 

  38. Palomera-Perez, M. A., Martinez-Perez, M. E., Benitez-Perez, H., and Ortega-Arjona, J. L., Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14:500–506, 2010.

    Article  Google Scholar 

  39. Martinez-Prez, M. E., Hughes, A. D., Thom, S. A., Bharath, A. A., and Parker, K. H., Segmentation of blood vessels from red-free and fluoroscein retinal images. Image Anal 11:47–61, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Ganjee.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganjee, R., Azmi, R. & Gholizadeh, B. An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images. J Med Syst 38, 108 (2014). https://doi.org/10.1007/s10916-014-0108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0108-z

Keywords

Navigation