Advertisement

Journal of Medical Systems

, 38:108 | Cite as

An Improved Retinal Vessel Segmentation Method Based on High Level Features for Pathological Images

  • Razieh Ganjee
  • Reza Azmi
  • Behrouz Gholizadeh
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

Most of the retinal blood vessel segmentation approaches use low level features, resulting in segmenting non-vessel structures together with vessel structures in pathological retinal images. In this paper, a new segmentation method based on high level features is proposed which can process the structure of vessel and non-vessel independently. In this method, segmentation is done in two steps. First, using low level features segmentation is accomplished. Second, using high level features, the non-vessel components are removed. For evaluation, STARE database is used which is publicly available in this field. The results show that the proposed method has 0.9536 accuracy and 0.0191 false positive average on all images of the database and 0.9542 accuracy and 0.0236 false positive average on pathological images. Therefore, the proposed approach shows acceptable accuracy on all images compared to other state of the art methods, and the least false positive average on pathological images.

Keywords

Segmentation Pathological image Blood vessel High level features 

References

  1. 1.
    Niemeijer, M., Abramoff, M., and van Ginneken, B., Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans. Med. Imag 26:116–127, 2007.CrossRefGoogle Scholar
  2. 2.
    Fleming, A., Philip, S., Goatman, K., Olson, J., and Sharp, P., Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans. Med. Imag 25:1223–1232, 2006.CrossRefGoogle Scholar
  3. 3.
    Nayak, J., Bhat, P. S., Acharya, U. R., Lim, C. M., and Kagathi, M., Automated identification of diabetic retinopathy stages using digital fundus images. J. Med. Syst. 32:107–115, 2008.CrossRefGoogle Scholar
  4. 4.
    Akram, U. M., and Khan, S. A., Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J. Med. Syst. 36:3151–3162, 2012.CrossRefGoogle Scholar
  5. 5.
    Niemeijer, M., Abràmoff, M. D., and van Ginneken, B., Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans. Med. Imag 28:775–785, 2009.CrossRefGoogle Scholar
  6. 6.
    Frank, R.N., “Diabetic retinopathy,” Prog. Retin Eye Res., pp. 361–392, 1995.Google Scholar
  7. 7.
    Faust, O., Acharya, U. R., Ng, E. Y. K., Ng, K. H., and Suri, J. S., Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review. J. Med. Syst. 36:145–157, 2012.CrossRefGoogle Scholar
  8. 8.
    Yun, W. L., Acharya, R., Venkatesh, Y. V., Min, C. C. L. C., and Ng, E. Y. K., Identification of different stages of diabetic retinopathy. Inf. Sci. 178:106–121, 2008.CrossRefGoogle Scholar
  9. 9.
    Williams, R., et al., Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye 18:963–983, 2004.CrossRefGoogle Scholar
  10. 10.
    Reza, A. W., and Eswaran, C., A decision support system for automatic screening of non-proliferative diabetic retinopathy. J. Med. Syst. 35:17–24, 2011.CrossRefGoogle Scholar
  11. 11.
    Rajendra Acharya, U., Ng, E. Y. K., Jen-Hong Tan, S., Sree, V., and Ng, K.-H., An integrated index for the identification of diabetic retinopathy stages using texture parameters. J. Med. Syst. 36:2011–2020, 2012.CrossRefGoogle Scholar
  12. 12.
    Mookiah, M. R. K., et al., Computer-aided diagnosis of diabetic retinopathy: A review. Comput. Biol. Med. 43:2136–2155, 2013.CrossRefGoogle Scholar
  13. 13.
    Winder, R. J., Morrow, P. J., McRitchie, I. N., Bailie, J. R., and Hart, P. M., Algorithms for digital image processing in diabetic retinopathy. Comput. Med. Imaging Graph. 33:608–622, 2009.CrossRefGoogle Scholar
  14. 14.
    Teng, T., Lefley, M., and Claremont, D., Progress towards automated diabetic ocular screening: A review of image analysis and intelligent systems for diabetic retinopathy. Med. Biol. Eng. Comput. 40(1):2–13, 2002.CrossRefGoogle Scholar
  15. 15.
    Hoover, A., Kouznetsova, V., and Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imag 19:203–210, 2000.CrossRefGoogle Scholar
  16. 16.
    Fraz, M., et al., Blood vessel segmentation methodologies in retinal images— a survey. Comput. Methods Prog. Biomed. 108:407–433, 2012.CrossRefGoogle Scholar
  17. 17.
    Zhang, B., Zhang, L., Zhang, L., and Karray, F., Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40:438–445, 2010.CrossRefGoogle Scholar
  18. 18.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M., Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag 8:263–269, 1989.CrossRefGoogle Scholar
  19. 19.
    Al-Rawi, M., Qutaishat, M., and Arrar, M., An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 37:262–267, 2007.CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Li, Q., You, J., and Zhang, D., A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans. Inf. Technol. Biomed. 13:528–534, 2009.CrossRefGoogle Scholar
  21. 21.
    Li, Q., You, J., and Zhang, D., Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst. Appl. 39:7600–7610, 2012.CrossRefGoogle Scholar
  22. 22.
    Fathi, A., and Naghsh-Nilchi, A. R., Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed. Signal Process. Control 8:71–80, 2013.CrossRefGoogle Scholar
  23. 23.
    Nguyen, U. T. V., Bhuiyan, A., Park, L. A. F., and Ramamohanarao, K., An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46:703–715, 2013.CrossRefGoogle Scholar
  24. 24.
    Vlachos, M., and Dermatas, E., Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34:213–227, 2010.CrossRefGoogle Scholar
  25. 25.
    Yin, Y., Ade, M., and Bourennane, S., Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn. 45:1235–1244, 2012.CrossRefMATHGoogle Scholar
  26. 26.
    Delibasis, K. K., Kechriniotis, A. I., Tsonos, C., and Assimakis, N., Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput. Methods Prog. Biomed 100:108–122, 2010.CrossRefGoogle Scholar
  27. 27.
    Adel, M., Moussaoui, A., Rasigni, M., Bourennane, S., and Hamami, L., Statistical-based tracking technique for linear structures detection: application to vessel segmentation in medical images. IEEE Signal Process. Lett. 17:555–558, 2010.CrossRefGoogle Scholar
  28. 28.
    Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., and van Ginneken, B., Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag 23:501–509, 2004.CrossRefGoogle Scholar
  29. 29.
    Soares, J. V. B., Leandro, J. J. G., CesarJr, R. M., Jelinek, H. F., and Cree, M. J., Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag 25:1214–1222, 2006.CrossRefGoogle Scholar
  30. 30.
    Ricci, E., and Perfetti, R., Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imag 26:1357–1365, 2007.CrossRefGoogle Scholar
  31. 31.
    Lupascu, C. A., Tegolo, D., and Trucco, E., retinal vessel segmentation using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 14:1267–1274, 2010.CrossRefGoogle Scholar
  32. 32.
    Marín, D., Aquino, A., Gegúndez-Arias, M. E., and Bravo, J. M., A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag 30:146–158, 2011.CrossRefGoogle Scholar
  33. 33.
    You, X., Peng, Q., Yaun, Y., Cheng, Y., and Lei, J., Segmentation of retinal blood vessels sing the radial projection and semi-supervised approach. Pattern Recogn. 44:2314–2324, 2011.CrossRefGoogle Scholar
  34. 34.
    Garg, S., Sivaswamy, J., Chandra, S., “Unsupervised curvature-based retinal vessel segmentation,” Proc. IEEE Int. Symp. BioMed. Imaging, pp. 344–347, 2007.Google Scholar
  35. 35.
    Kande, G. B., Subbaiah, P. V., and Savithri, T. S., Unsupervised Fuzzy Based Vessel Segmentation In Pathological Digital Fundus Images. J. Med. Syst. 34:849–858, 2010.CrossRefGoogle Scholar
  36. 36.
    Ng, J., et al., Maximum likelihood estimation of vessel parameters from scale space analysis. Image Vis. Comput. 28:55–63, 2010.CrossRefGoogle Scholar
  37. 37.
    Mendonca, A. M., and Campilho, A., Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag 25:1200–1213, 2006.CrossRefGoogle Scholar
  38. 38.
    Palomera-Perez, M. A., Martinez-Perez, M. E., Benitez-Perez, H., and Ortega-Arjona, J. L., Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14:500–506, 2010.CrossRefGoogle Scholar
  39. 39.
    Martinez-Prez, M. E., Hughes, A. D., Thom, S. A., Bharath, A. A., and Parker, K. H., Segmentation of blood vessels from red-free and fluoroscein retinal images. Image Anal 11:47–61, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer EngineeringAlzahra UniversityTehranIran

Personalised recommendations