Advertisement

DWT-Based Segmentation Method for Coronary Arteries

  • Shuo-Tsung Chen
  • Pei-Kai Hung
  • Muh-Shi Lin
  • Chao-Yu Huang
  • Chung-Ming Chen
  • Tzung-Dau Wang
  • Wen-Jeng Lee
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Topical Collection on Systems-Level Quality Improvement

Abstract

This work presents a new method for segmenting coronary arteries automatically in computed tomography angiography (CTA) data sets. The method automatically isolates heart and coronary arteries from surrounding structures and search for the probable location of coronary arteries by 3D region growing. Based on the dilation of the probable location, discrete wavelet transformation (DWT) and λ – mean operation complete accurate detection of coronary arties. Finally, the proposed method is tested on clinical CTA data-sets. The results on clinical datasets show that the proposed method is able to extract each branch of arteries when comparing to commercial software GE Healthcare and delineated ground truth.

Keywords

Coronary arteries Computed tomography angiography Automatically Region growing Discrete wavelet transformation λ-mean operation 

Notes

Acknowledgments

This work was in part supported by the National Science Council, Taiwan (R.O.C.), under the NSC grant: NSC 98-2221-E-002-098-MY3.

References

  1. 1.
    Mandal, I., and Sairam, N., Accurate Prediction of Coronary Artery Disease Using Reliable Diagnosis System. Journal of Medical Systems 36(5):3353–3373, October 2012.Google Scholar
  2. 2.
    Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A., “Multiscale Vessel Enhancement Filtering”, Proceeding International Conference on Medical Image Computing Computer-Assisted Intervention-MICCAI 1998. LNCS 1496:130–137, 1998.Google Scholar
  3. 3.
    Shikata, H., McLennan, G., Hoffman, E. A., and Sonka, M., Segmentation of Pulmonary Vascular Tree From Thoracic 3D CT Images. International Journal of Biomedical Imaging 2009(636240):11, 2009. doi: 10.1155/2009/636240.Google Scholar
  4. 4.
    Kirbas, C., and Quek, F., A Review of Vessel Extraction Techniques and Algorithms. ACM Comput. Surv. 36(2):81–121, 2004.CrossRefGoogle Scholar
  5. 5.
    D. Nain, A. Yezzi, and G. Turk, “Vessel Segmentation Using a Driven Flow Shape”, Proceeding International Conference on Medical Image Computing Computer-Assisted Intervention-MICCAI 2004, LNCS 3216, pp. 51–59, 2004Google Scholar
  6. 6.
    Yang, Y., Tannenbaum, A., and Giddens, D., Knowledge-Based 3D Segmentation and Reconstruction of Coronary Arteries Using CT Images. IEEE Conference on Engineering in Medicine and Biology Society, Atlanta, 2004.Google Scholar
  7. 7.
    Chan, T. F., and Vese, L. A., Active Contours without Edges. IEEE Transactions on Image Processing 10:266–277, 2001.CrossRefMATHGoogle Scholar
  8. 8.
    Brox, T., and Weickert, J., Level Set Segmentation with Multiple Regions. IEEE Transactions on Image Processing 15(10):3213–3218, 2006.CrossRefGoogle Scholar
  9. 9.
    Pratt, W. K., Digital Image Processing 4th Edition. Wiley, Los Altos, 2007.CrossRefGoogle Scholar
  10. 10.
    Y. Yang, A. Tannenbaum, D. Giddens, and A. Stillman, “Automatic Segmentation of Coronary Arteries using Bayesian Driven Implict Surfaces,” 4 th IEEE International Symposium on Biomedical Imaging (ISBI), pp.189-192, 2007Google Scholar
  11. 11.
    Wang, L., He, L., Mishra, A., and Li, C., Active Contours Driven by Local Gaussian Distribution Fitting Energy. Journal of Signal Processing 89(12):2435–2447, 2009.CrossRefMATHGoogle Scholar
  12. 12.
    Manniesing, R., Schaap, M., Rozie, S., Hameeteman, R., Vukadinovic, D., Lugt, A. V. D., and Niessen, W., Robust CTA Lumen Segmentation of the Atherosclerotic Carotid Artery Bifurcation in a Large Patient Population. Medical Image Analysis 14(6):759–769, 2010.CrossRefGoogle Scholar
  13. 13.
    Tek, H., Zheng, Y., Gulsun, M. A., and Funka-Lea, G., An Automatic System For Segmenting Coronary Arteries from CTA. Proceeding International Conference on Medical Image Computing Computer-Assisted Intervention-MICCAI-CVII 2011:47–54, 2011.Google Scholar
  14. 14.
    Won, J.-H., Rosenberg, J., Rubin, G. D., and Napel, S., Uncluttered single-image visualization of the abdominal aortic vessel tree: Method and evaluation. Medical Physics 36(11), 2009.Google Scholar
  15. 15.
    Kaiqiong, S., Zhen, C., Shaofeng, J., and Yu, W., Morphological Multiscale Enhancement, Fuzzy Filter and Watershed for Vascular Tree Extraction in Angiogram. Journal of Medical Systems 35(5):811–824, 2011.CrossRefGoogle Scholar
  16. 16.
    Daubechies, I., Orthogonal Bases of Compactly Supported Wavelets. Communications on Pure and Applied Mathematics 41:909–996, 1988.CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Mallat, S., A Theory for Multiresolution Signal Decomposition: the Wavelet Respresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11:674–693, 1989.CrossRefMATHGoogle Scholar
  18. 18.
    Burrus, C. S., Gopinath, R. A., and Gao, H., Introduction to Wavelet Theory and Its Application. Prentice-Hall, New Jersey, 1998.Google Scholar
  19. 19.
    Pavlidis, T., and Liow, Y.-T., Integrating Region Growing and Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 12:225–233, 1990.CrossRefGoogle Scholar
  20. 20.
    User, M., Local Linear Transforms for Texture Measurements. Signal Processing 11(1):61–79, July, 1986.Google Scholar
  21. 21.
    Chang, T., and Jay Kuo, C.-C., Texture Analysis and Classification with Tree-Structured Wavelet Transform. IEEE Transactions on Image Processing 2(4):429–441, 1993.CrossRefGoogle Scholar
  22. 22.
    Unser, M., Texture Classification and Segmentation Using Wavelet Frames. IEEE Transactions on Image Processing 4(11):1549–1560, 1995.CrossRefGoogle Scholar
  23. 23.
    Wang, Z.-Z., and Yong, J.-H., Texture Analysis Classification and Segmentation with Linear Regression Model Based on Wavelet Transform. IEEE Transactions on Image Processing 17(8):1421–1430, 2008.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shuo-Tsung Chen
    • 1
    • 2
  • Pei-Kai Hung
    • 1
  • Muh-Shi Lin
    • 3
    • 4
    • 5
  • Chao-Yu Huang
    • 1
  • Chung-Ming Chen
    • 1
  • Tzung-Dau Wang
    • 6
  • Wen-Jeng Lee
    • 7
  1. 1.Institute of Biomedical EngineeringNational Taiwan UniversityTaipeiRepublic of China
  2. 2.Department of Applied MathematicsTunghai UniversityTaichungRepublic of China
  3. 3.Department of NeurosurgeryTaipei City HospitalTaipeiRepublic of China
  4. 4.Division of Neurosurgery, Department of SurgeryNew Taipei City HospitalNew Taipei CityRepublic of China
  5. 5.Department of Surgery, Faculty of Medicine, School of MedicineNational Yang-Ming UniversityTaipeiRepublic of China
  6. 6.Cardiovascular Center and Division of Cardiology, Department of Internal MedicineNational Taiwan University HospitalTaipeiRepublic of China
  7. 7.Department of Medical ImagingNational Taiwan University HospitalTaipeiRepublic of China

Personalised recommendations