A Medical Application Integrating Remote 3D Visualization Tools to Access Picture Archiving and Communication System on Mobile Devices

  • Longjun He
  • Xing Ming
  • Qian Liu
Mobile Systems
Part of the following topical collections:
  1. Topical Collection on Mobile Systems


With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.


Medical images PACS Remote visualization Mobile health 



This work was supported by the National High-Tech Research and Development Program of China (863 Program: 2012AA02A606), the Program for New Century Excellent Talents in University (Grant No. NCET-10-0386) and the graduate innovation fund of Graduate Base of Innovation and Enterprise (No.HF-11-39-2013).


  1. 1.
    Fridell, K., Aspelin, P., Lars Edgren, L., and Lindsköld, L. N., PACS influence the radiographer’s work. Radiography 15:12, 2009.CrossRefGoogle Scholar
  2. 2.
    Wang, K. C., Filice, R. W., Philbin, J. F., Siegel, E. L., and Nagy, P. G., Five levels of PACS modularity: Integrating 3D and other advanced visualization tools. J. Digit. Imaging 24(6):1096–1102, 2011. doi: 10.1007/s10278-011-9366-1.CrossRefGoogle Scholar
  3. 3.
    Ivetic, D., and Dragan, D., Medical image on the go! J. Med. Syst. 35(4):499–516, 2011. doi: 10.1007/s10916-009-9386-2.CrossRefGoogle Scholar
  4. 4.
    Spelic, D., and Zalik, B., Lossless compression of threshold-segmented medical images. J. Med. Syst. 36(4):2349–2357, 2012. doi: 10.1007/s10916-011-9702-5.CrossRefGoogle Scholar
  5. 5.
    Valente, F., Viana-Ferreira, C., Costa, C., and Oliveira, J. L., A RESTful image gateway for multiple medical image repositories. IEEE Trans. Inf. Technol. Biomed. 16(3):356–364, 2012. doi: 10.1109/titb.2011.2176497.CrossRefGoogle Scholar
  6. 6.
    Lipton, P., Nagy, P., and Sevinc, G., Leveraging internet technologies with DICOM WADO. J. Digit. Imaging 25(5):646–652, 2012. doi: 10.1007/s10278-012-9469-3.CrossRefGoogle Scholar
  7. 7.
    Lee, S., Lee, T., Jin, G., and Hong, J., An implementation of wireless medical image transmission system on mobile devices. J. Med. Syst. 32(6):471–480, 2008.CrossRefGoogle Scholar
  8. 8.
    Hsieh, J. C., and Lo, H. C., The clinical application of a PACS-dependent 12-lead ECG and image information system in E-medicine and telemedicine. J. Digit. Imaging 23(4):501–513, 2010.CrossRefGoogle Scholar
  9. 9.
    Mitchell, J. R., Sharma, P., Modi, J., Simpson, M., Thomas, M., Hill, M. D., and Goyal, M., A smartphone client–server teleradiology system for primary diagnosis of acute stroke. J. Med. Internet Res. 13(2), 2011. doi: 10.2196/jmir.1732.
  10. 10.
    Székely, A., Talanow, R., and Bágyi, P., Smartphones, tablets and mobile applications for radiology. Eur. J. Radiol. 82:829–836, 2013.CrossRefGoogle Scholar
  11. 11.
    Noon, C., Holub, J., and Winer, E., Real-time volume rendering of digital medical images on an iOS device. In: Akopian, D., Creutzburg, R., Georgiev, T.G., et al. (Eds.), Multimedia Content and Mobile Devices. Vol. 8667. Proceedings of SPIE. Spie-Int Soc Optical Engineering, Bellingham, 2013. doi: 10.1117/12.2005335.
  12. 12.
    Butson, C. R., Tamm, G., Jain, S., Fogal, T., and Kruger, J., Evaluation of interactive visualization on mobile computing platforms for selection of deep brain stimulation parameters. IEEE Trans. Vis. Comput. Graph 19(1):108–117, 2012. doi: 10.1109/tvcg.2012.92.CrossRefGoogle Scholar
  13. 13.
    Johnson, C. R., Biomedical visual computing: Case studies and challenges. Comput. Sci. Eng. 14(1):12–20, 2012.CrossRefGoogle Scholar
  14. 14.
    Aycan mobile. Accessed 11 December 2013.
  15. 15.
    Choudhri, A. F., and Radvany, M. G., Initial experience with a handheld device digital imaging and communications in medicine viewer: OsiriX mobile on the iPhone. J. Digit. Imaging 24(2):184–189, 2011.CrossRefGoogle Scholar
  16. 16.
    Paravati, G., Sanna, A., Lamberti, F., and Ciminiera, L., A novel approach to support quality of experience in remote visualization on mobile devices. In: Eurographics, pp 223–226, 2008.Google Scholar
  17. 17.
    GDCM. Accessed 11 December 2013.
  18. 18.
    jpegsr8d. Accessed 11 December 2013.
  19. 19.
    Savcenko, V., Erickson, B. J., Persons, K. R., Campeau, N. G., Huston, J., Wood, C. P., and Schreiner, S. A., An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to neurologic computed tomography and magnetic resonance images. J. Digit. Imaging 13(2):183–185, 2000.CrossRefGoogle Scholar
  20. 20.
    Johnson, P. T., Zimmerman, S. L., Heath, D., Eng, J., Horton, K. M., Scott, W. W., and Fishman, E. K., The iPad as a mobile device for CT display and interpretation: Diagnostic accuracy for identification of pulmonary embolism. Emerg. Radiol. 19(4):323–327, 2012.CrossRefGoogle Scholar
  21. 21.
    Herk Mv Conquest. Accessed 11 December 2013.
  22. 22.
    NetLimiter. Accessed 24 January 2014, 2003.
  23. 23.
    Toomey, R. J., Ryan, J. T., McEntee, M. F., Evanoff, M. G., Chakraborty, D. P., McNulty, J. P., Manning, D. J., Thomas, E. M., and Brennan, P. C., The diagnostic efficacy of hand-held devices for emergency radiological consultation. AJR Am. J. Roentgenol. 194(2):467–474, 2010. doi: 10.2214/AJR.09.3418.CrossRefGoogle Scholar
  24. 24.
    Park, J. B., Choi, H. J., Lee, J. H., and Kang, B. S., An assessment of the iPad 2 as a CT teleradiology tool using brain CT with subtle intracranial hemorrhage under conventional illumination. J. Digit. Imaging 26(4):1–8, 2013. doi: 10.1007/s10278-013-9580-0.CrossRefGoogle Scholar
  25. 25.
    Chen, W. K., and Tso, H. K., Visual sharing protection method for medical images. J. Med. Syst. 37(1), 2013. doi: 10.1007/s10916-012-9900-9.
  26. 26.
    Lien, C. Y., Yang, T. L., Hsiao, C. H., and Kao, T., Realizing digital signatures for medical imaging and reporting in a PACS environment. J. Med. Syst. 37(1), 2013. doi: 10.1007/s10916-012-9924-1
  27. 27.
    Mobeen, M. M., and Feng, L., Mobile visualization of biomedical volume datasets. J. Internet. Technol. Secured Trans. 1(2):52–60, 2012.Google Scholar
  28. 28.
    Chen, J. Y., and Thropp, J. E., Review of low frame rate effects on human performance. IEEE Trans. Syst. Man Cybern. A 37(6):1063–1076, 2007. doi: 10.1109/tsmca.2007.904779.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Biomedical Photonics of Ministry of EducationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations