Skip to main content

Advertisement

Log in

Automatic and Adaptive Classification of Electroencephalographic Signals for Brain Computer Interfaces

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Extracting knowledge from electroencephalographic (EEG) signals has become an increasingly important research area in biomedical engineering. In addition to its clinical diagnostic purposes, in recent years there have been many efforts to develop brain computer interface (BCI) systems, which allow users to control external devices only by using their brain activity. Once the EEG signals have been acquired, it is necessary to use appropriate feature extraction and classification methods adapted to the user in order to improve the performance of the BCI system and, also, to make its design stage easier. This work introduces a novel fast adaptive BCI system for automatic feature extraction and classification of EEG signals. The proposed system efficiently combines several well-known feature extraction procedures and automatically chooses the most useful features for performing the classification task. Three different feature extraction techniques are applied: power spectral density, Hjorth parameters and autoregressive modelling. The most relevant features for linear discrimination are selected using a fast and robust wrapper methodology. The proposed method is evaluated using EEG signals from nine subjects during motor imagery tasks. Obtained experimental results show its advantages over the state-of-the-art methods, especially in terms of classification accuracy and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.bbci.de/competition/iv/

  2. http://biosig.sourceforge.net/

References

  1. Berger, H., Über das Elektroenkephalogramm des Menschen. Arch. Psychiatr. Nervenkr. 87:527–570, 1929.

    Article  Google Scholar 

  2. Sanei, D., and Chambers, J., EEG signal processing. John Wiley & Sons, 2008.

  3. Abibullaev, B., and An, J., Decision support algorithm for diagnosis of ADHD using electroencephalograms. J. Med. Syst. 1–14, 2012. doi:10.1007/s10916-011-9742-x.

  4. Min W., and Luo G., Medical applications of EEG wave classification. Chance 22(4):14–20, 2009.

    Article  Google Scholar 

  5. Tong, S., and Thankor, N. V., Quantitative EEG analysis methods and clinical applications. Artech House, 2009.

  6. Bashashati, A., Fatourechi, M., Ward, R. K., and Birch G. E., A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4(2):R32–R57, 2007.

    Article  Google Scholar 

  7. Wolpaw, J. R., Brain-computer interfaces as new brain output pathways. J. Physiol. 579(3):613–619, 2007.

    Article  Google Scholar 

  8. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M., Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6):767–791, 2002.

    Article  Google Scholar 

  9. Carabalona, R., Castiglioni, P., and Gramatica, F., Brain-computer interfaces and neurorehabilitation. Stud. Health Technol. Inform. 145:160–176, 2009.

    Google Scholar 

  10. Machado, S., Araújo, F., Paes, F., Velasques, B., Cunha, M., Budde, H., Basile, L. F., Anghinah, R., Arias-Carrión, O., Cagy, M., Piedade, R., De Graaf, T. A., Sack, A. T., and Ribeiro, P., EEG-based brain-computer interfaces: An overview of basic concepts and clinical applications in neurorehabilitation. Rev. Neurosci. 21(6):451–468, 2010.

    Google Scholar 

  11. VanErp, J. B. F., Lotte, F., and Tangermann, M., Brain-computer interfaces: Beyond medical applications. Computer 45:26–34, 2012.

    Article  Google Scholar 

  12. Blankertz, B., Tangermann, M., Vidaurre, C., Fazli, S., Sannelli, C., Haufe, S., Maeder, C., Ramsey, L. E., Sturm, I., Curio, G., and Mueller, K. R., The Berlin brain-computer interface: Non-medical uses of BCI technology. Front. Neurosci. 4:1–17, 2010.

    Article  Google Scholar 

  13. Duda, R. O., Hart, P. E., and Stork, D. G., Pattern classification. Wiley-Interscience, 2000.

  14. Müller, K. R., Krauledat, M., Dornhege, G., Curio, G., and Blankertz, B, Machine learning techniques for brain-computer interfaces. Biomed. Tech. 49(1):11–22, 2004.

    Article  Google Scholar 

  15. Cabrera, A., Farina, D., and Dremstrup, K., Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery. Med. Biol. Eng. Comput. 48:123–132, 2010.

    Article  Google Scholar 

  16. Khorshidtalab, A., and Salami, M. J. E., EEG signal classification for real-time brain-computer interface applications: A review. In: 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia. pp 1–7, 2011.

  17. Lee, F., Scherer, R., Leeb, R., Neuper, C., Bischof, H., and Pfurtscheller, G., A comparative analysis of multi-class EEG classification for brain computer interface. In: 10th Computer Vision Winter Workshop, 2005.

  18. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B., A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2):R1–R13, 2007.

    Article  Google Scholar 

  19. Martens, S. M. M., and Leiva, J. M., A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller. J. Neural Eng. 7(2):026003, 2010.

    Article  Google Scholar 

  20. Krusienski, D. J., Sellers, E. W., Cabestaing, F., Bayoudh, S., McFarland, D. J., Vaughan, T. M., and Wolpaw, J. R., A comparison of classification techniques for the P300 speller. J. Neural Eng. 3(4):299–305, 2006.

    Article  Google Scholar 

  21. Anderson, C., Stolz, E., and Shamsunder, S., Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans. Biomed. Eng. 45(3):277–286, 1998.

    Article  Google Scholar 

  22. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., and Muller, K. R., Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1):41–56, 2008.

    Article  Google Scholar 

  23. Gandhi, T., Panigrahi, B. K., and Anand, S., A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17):3051–3057, 2011.

    Article  Google Scholar 

  24. Hjorth B., EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3):306–310, 1970.

    Article  Google Scholar 

  25. Zhao, H., Liu, C., Li, C., and Wang, H., Feature extraction using wavelet entropy and band powers in brain-computer interface. In: 2nd International Conference on Signal Processing Systems (ICSPS). Vol 2, pp V2-670–V2-673, 2010.

  26. Schlögl, A., Vidaurre, C., and Müller, K. R., Adaptive methods in BCI research—an introductory tutorial. In: Allison, B., Graimann, B., and Pfurtscheller, G. (Eds.), Brain-Computer Interfaces, The Frontiers Collection. pp. 331–355, Springer, 2010.

  27. Shenoy, P., Krauledat, M., Blankertz, B., Rao, R. P. N., and Müller, K. R., Towards adaptive classification for BCI. J. Neural Eng. 3(1):R13–R23, 2006.

    Article  Google Scholar 

  28. Krusienski, D. J., Grosse-Wentrup, M., Galán, F., Coyle, D., Miller, K. J., Forney, E., and Anderson, C. W., Critical issue in state-of-the-art brain-computer interface signal processing. J. Neural Eng. 8:1–8, 2011.

    Google Scholar 

  29. Corralejo, R., Hornero, R., and Alvarez, D., Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp 7703–7706, 2011.

  30. Koprinska, I., Feature selection for brain-computer interfaces. In: International Workshop on New Frontiers in Applied Data Mining (PAKDD), no. 5669 in LNCS. pp 106–117, 2009.

  31. Peterson, D. A., Knight, J. N., Kirby, M. J., Anderson, C. W., and Thaut, M. H., Feature selection and blind source separation in an EEG-based brain-computer interface. EURASIP J. Appl. Signal Process. 2005(19):3128–3140, 2005.

    Article  MATH  Google Scholar 

  32. Sabeti, M., Boostani, R., Katebi, S., and Price, G., Selection of relevant features for EEG signal classification of schizophrenic patients. Biomed Signal Proces 2(2):122–134, 2007.

    Article  Google Scholar 

  33. Schroder, M., Bogdan, M., Hinterberger, T., and Birbaumer, N. Automated EEG feature selection for brain computer interfaces. In: First International IEEE EMBS Conference on Neural Engineering, Capri, Italy. pp 626–629, 2003.

  34. Efron, B., Hastie, T., Johnstone, L., and Tibshirani, R., Least angle regression. Ann. Stat. 32:407–499, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  35. Bartoli, A., On computing the prediction sum of squares statistic in linear least squares problems with multiple parameter or measurement sets. Int. J. Comput. Vis. 85:133–142, 2009.

    Article  Google Scholar 

  36. Tangermann, M., Müller, K. R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., Leeb, R., Mehring, C., Miller, K., Müller-Putz, G., Nolte, G., Pfurtscheller, G., Preissl, H., Schalk, G., Schlögl, A., Vidaurre, C., Waldert, S., and Blankertz, B., Review of the BCI competition IV. Front. Neurosci. 6(55):1–29, 2012.

    Google Scholar 

  37. Ang K. K., Chin Z. Y., Zhang H., and Guan C., Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recognit. 45:2137–2144, 2012.

    Article  MATH  Google Scholar 

  38. Brodu, N., Lotte, F., and Lecuyer, A., Exploring two novel features for EEG-based brain-computer interfaces: Multifractal cumulants and predictive complexity. Neurocomputing 1: 1–12, 2011.

    Google Scholar 

  39. Pfurtscheller, G., Brunner, C., Schlögl, A., and da Silva, F. L., Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1):153–159, 2006.

    Article  Google Scholar 

  40. Oppenheim, A. V., and Schafer, R. W., Discrete-Time Signal Processing, 2nd edn. Prentice Hall, 1999.

  41. Schlögl, A., The electroencephalogram and the adaptive autoregressive model: Theory and applications. Shaker Verlag, 2000.

  42. Billinger, M., Brunner, C., and Neuper, C., Classification of adaptive autoregressive models at different sampling rates in a motor imagery-based BCI. In: Fourth International BCI Meeting, Pacific Grove, CA, USA, 2010.

  43. Rodríguez-Bermúdez, G., Roca-González, J., Martínez-González, F., Peña Mora, L., Roca-González, J. L., and Roca-Dorda, J., Performance analysis of different feature-classifier binomials in motor-imagering BCIs: Preliminary results. In: 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Rome, Italy. pp. 1–5, 2010.

  44. Delgado-Saa, J. F., and Cetin, M., Hidden conditional random fields for classification of imagery motor tasks from EEG data. In: 19th European Signal Processing Conference (EUSIPCO 2011), Barcelona, Spain. pp. 1377–1381, 2011.

  45. Serre, D., Matrices: Theory and Applications. Springer, New York, 2002.

    MATH  Google Scholar 

  46. Blum, A. L., and Langley, P., Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2):245–271, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  47. Fruitet, J., McFarland, D. J., and Wolpaw, J. R., A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface. J. Neural Eng. 7(1):16,003, 2010.

    Article  Google Scholar 

  48. Garrett, D., Peterson, D., Anderson, C., and Thaut, M., Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2):141–144, 2003.

    Article  Google Scholar 

  49. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., and Lendasse, A., OP-ELM: Optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1):158–162, 2009.

    Article  Google Scholar 

  50. Miche, Y., VanHeeswijk, M., Bas, P., Simula, O., and Lendasse, A.,TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16):2413–2421, 2011.

    Article  Google Scholar 

  51. Lemm, S., Blankertz, B., Dickhaus, T., and Müller K. R., Introduction to machine learning for brain imaging. NeuroImage 56:387–399, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. García-Laencina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Bermúdez, G., García-Laencina, P.J. Automatic and Adaptive Classification of Electroencephalographic Signals for Brain Computer Interfaces. J Med Syst 36 (Suppl 1), 51–63 (2012). https://doi.org/10.1007/s10916-012-9893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-012-9893-4

Keywords

Navigation