Journal of Medical Systems

, Volume 36, Issue 5, pp 3029–3049 | Cite as

Modeling Paradigms for Medical Diagnostic Decision Support: A Survey and Future Directions

  • Kavishwar B. Wagholikar
  • Vijayraghavan Sundararajan
  • Ashok W. Deshpande
Original Paper


Use of computer based decision tools to aid clinical decision making, has been a primary goal of research in biomedical informatics. Research in the last five decades has led to the development of Medical Decision Support (MDS) applications using a variety of modeling techniques, for a diverse range of medical decision problems. This paper surveys literature on modeling techniques for diagnostic decision support, with a focus on decision accuracy. Trends and shortcomings of research in this area are discussed and future directions are provided. The authors suggest that—(i) Improvement in the accuracy of MDS application may be possible by modeling of vague and temporal data, research on inference algorithms, integration of patient information from diverse sources and improvement in gene profiling algorithms; (ii) MDS research would be facilitated by public release of de-identified medical datasets, and development of opensource data-mining tool kits; (iii) Comparative evaluations of different modeling techniques are required to understand characteristics of the techniques, which can guide developers in choice of technique for a particular medical decision problem; and (iv) Evaluations of MDS applications in clinical setting are necessary to foster physicians’ utilization of these decision aids.


Modeling Computer aided Medical diagnosis Clinical decision support 



The authors are grateful for the excellent suggestions and comments of the reviewers that helped improve the manuscript. The first author was supported by a fellowship from Indian Council of Medical Research (ICMR), when part of this research was carried out.


  1. 1.
    E. S. Berner, R. S. Maisiak, C. G. Cobbs, and O. D. Taunton. Effects of a decision support system on physicians’ diagnostic performance. Journal of the American Medical Informatics Association: JAMIA, 6(5):420–427, 1999.CrossRefGoogle Scholar
  2. 2.
    A. Hall and G. Walton. Information overload within the health care system: a literature review. Health Info Libr J, 21(2):102–108, 2004.CrossRefGoogle Scholar
  3. 3.
    J. Wyatt. Use and sources of medical knowledge. Lancet, 338(8779):1368–1373, 1991.CrossRefGoogle Scholar
  4. 4.
    G. A. Miller. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev, 63(2):81–97, 1956.CrossRefGoogle Scholar
  5. 5.
    R. Glassman, K. Leniek, and T. Haegerich. Human working memory capacity is 7 2 in a radial maze with distracting interruption: possible implication for neural mechanisms of declarative and implicit long-term memory. Brain Research Bulletin, 47(3):249–256, 1998.CrossRefGoogle Scholar
  6. 6.
    P. D. Clayton, R. S. Evans, T. Pryor, R. M. Gardner, P. J. Haug, O. B. Wigertz, and H. R. Warner. Bringing help to the clinical laboratory–use of an expert system to provide automatic interpretation of laboratory data. Annals of clinical biochemistry, 24 Suppl 1:5–11, 1987.Google Scholar
  7. 7.
    Richard Smith. What clinical information do doctors need? BMJ, 313(7064):1062–1068, 1996.CrossRefGoogle Scholar
  8. 8.
    Jon Brassey, Glyn Elwyn, Chris Price, and Paul Kinnersley. Just in time information for clinicians: a questionnaire evaluation of the attract project. BMJ, 322(7285):529–530, 2001.CrossRefGoogle Scholar
  9. 9.
    Gordon D. Schiff, Seijeoung Kim, Richard Abrams, Karen Cosby, Bruce Lambert, Arthur S. Elstein, Scott Hasler, Nela Krosnjar, Richard Odwazny, Mary F. Wisniewski, and Robert A. McNutt. Diagnosing Diagnosis Errors: Lessons from a Multi-institutional Collaborative Project. Advances in Patient Safety 2005;2:255-278., volume 2, pp. 255–278. 2005.Google Scholar
  10. 10.
    Mark L. Graber, Nancy Franklin, and Ruthanna Gordon. Diagnostic error in internal medicine. Arch Intern Med, 165(13):1493–1499, 2005.CrossRefGoogle Scholar
  11. 11.
    David B. Aronow, Thomas H. Payne, and S. Pierre Pincetl. Postdoctoral training in medical informatics: A survey of national library of medicine-supported fellows. Med Decis Making, 11(1):29–32, 1991.CrossRefGoogle Scholar
  12. 12.
    Robert S. Ledley and Lee B. Lusted. Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science, 130(3366):9–21, 1959.CrossRefGoogle Scholar
  13. 13.
    Randolph A. Miller. Medical diagnostic decision support systems—past, present, and future. Journal of the American Medical Informatics Association, 1(1):8–27, 1994.CrossRefGoogle Scholar
  14. 14.
    C. A. Kulikowski. Artificial intelligence in medicine: a personal retrospective on its emergence and early function. In Proceedings of ACM conference on History of medical informatics, New York, NY, USA, 1987. ACM Press, New York.Google Scholar
  15. 15.
    F. T. De Dombal. Assigning value to clinical information–a major limiting factor in the implementation of decision-support systems. Methods of information in medicine, 35(1):1–4, 1996.Google Scholar
  16. 16.
    B. Puppe, C. Ohmann, K. Goos, F. Puppe, and O. Mootz. Evaluating four diagnostic methods with acute abdominal pain cases. Methods Inf Med, 34(4):361–368, 1995.Google Scholar
  17. 17.
    J. D. Myers. The computer as a diagnostic consultant, with emphasis on use of laboratory data. Clin Chem, 32(9):1714–1718, 1986.Google Scholar
  18. 18.
    E. H. Shortliffe. Medical thinking: What should we do?, 2006.Google Scholar
  19. 19.
    Elaine F. Chouinard, Bernard L. Ryack, and Douglas M. Stetson. A comparison of the usability of three versions of a computerized medical diagnostic assistance program for abdominal pain. Technical report, Naval Submarine Medical Research Lab., Groton ,CT, 1991.Google Scholar
  20. 20.
    D. W. Bates. Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality. Journal of the American Medical Informatics Association, 10(6):523–530, 2003.CrossRefGoogle Scholar
  21. 21.
    Carol Friedman, Lyudmila Shagina, Yves Lussier, and George Hripcsak. Automated encoding of clinical documents based on natural language processing. Journal of the American Medical Informatics Association: JAMIA, 11(5):392–402, 2004.CrossRefGoogle Scholar
  22. 22.
    Jonathan Clive, Lee B. Lusted, Casimir Kulikowski, T. Allan Pryor, and Bruce McCormick. Computer algorithms for analyzing patient data. In AFIPS ’74: Proceedings of the May 6–10, 1974, national computer conference and exposition, p. 1025, New York, NY, USA, 1974. ACM Press, New York.Google Scholar
  23. 23.
    J. Ridderikhoff and B. van Herk. Who is afraid of the system? doctors’ attitude towards diagnostic systems. International journal of medical informatics, 53(1):91–100, 1999.CrossRefGoogle Scholar
  24. 24.
    H. R. Warner, A. F. Toronto, L. G. Veasey, and R. Stephenson. A mathematical approach to medical diagnosis. application to congenital heart disease. JAMA: The Journal of the America Medical Association, 177:177–183, 1961.CrossRefGoogle Scholar
  25. 25.
    R. S. Evans. The help system: a review of clinical applications in infectious diseases and antibiotic use. M.D. Computing: Computers in Medical Practice, 8(5), 1991.Google Scholar
  26. 26.
    Robert M. Kolodner and J. V. Douglas, editors. Computerizing Large Integrated Health Networks: the Va Success. Springer, New York, 1st edition, 1997.Google Scholar
  27. 27.
    F. T. de Dombal. Computers, diagnoses and patients with acute abdominal pain. Archives of emergency medicine, 9(3):267–270, 1992.Google Scholar
  28. 28.
    G. O. Barnett, J. J. Cimino, J. A. Hupp, and E. P. Hoffer. Dxplain. an evolving diagnostic decision-support system. JAMA: The journal of the American Medical Association, 258(1):67–74, 1987.CrossRefGoogle Scholar
  29. 29.
    A. Gammerman and A. R. Thatcher. Bayesian diagnostic probabilities without assuming independence of symptoms. Methods of Information in Medicine, 30(1):15–22, 1991.Google Scholar
  30. 30.
    I. Zelic, I. Kononenko, N. Lavrac, and V. Vuga. Induction of decision trees and Bayesian classification applied to diagnosis of sport injuries. Journal of Medical Systems, 21(6):429–444, 1997.CrossRefGoogle Scholar
  31. 31.
    Tom Burr, Frederick Koster, Rick Picard, Dave Forslund, Doug Wokoun, Ed Joyce, Judith Brillman, Phil Froman, and Jack Lee. Computer-aided diagnosis with potential application to rapid detection of disease outbreaks. Statistics in Medicine, 26(8):1857–1874, 2007.MathSciNetCrossRefGoogle Scholar
  32. 32.
    I. J. Check, G. T. Gowitt, and G. W. Staton. Bronchoalveolar lavage cell differential in the diagnosis of sarcoid interstitial lung disease. likelihood ratios based on computerized data base. American Journal of Clinical Pathology, 84(6):744–747, 1985.Google Scholar
  33. 33.
    D. F. Schorderet. Diagnosing human malformation patterns with a microcomputer: evaluation of two different algorithms. American Journal of Medical Genetics, 28(2):337–344, 1987.CrossRefGoogle Scholar
  34. 34.
    F. Wiener, M. Gabbai, and M. Jaffe. Computerized classification of congenital malformations using a modified Bayesian approach. Computers in Biology and Medicine, 17(4):259–267, 1987.CrossRefGoogle Scholar
  35. 35.
    C. Y. Lee, L. Carmony, M. Evens, F. Naeymi-Rad, and D. Trace. A test selection module for medas. In Symposium on Computer Applications in Medical Care, pp. 706–710, 1991.Google Scholar
  36. 36.
    R. L. Engle, B. J. Flehinger, S. Allen, R. Friedman, M. Lipkin, B. J. Davis, and L. L. Leveridge. Heme: a computer aid to diagnosis of hematologic disease. Bulletin of the New York Academy of Medicine, 52(5):584–600, 1976.Google Scholar
  37. 37.
    D. F. Graham. Computer-aided prediction of gangrenous and perforating appendicitis. British Medical Journal, 2(6099):1375–1377, 1977.CrossRefGoogle Scholar
  38. 38.
    I. D. Adams, M. Chan, P. C. Clifford, W. M. Cooke, V. Dallos, F. T. de Dombal, M. H. Edwards, D. M. Hancock, D. J. Hewett, and N. McIntyre. Computer aided diagnosis of acute abdominal pain: a multicentre study. Br Med J (Clin Res Ed), 293(6550):800–804, 1986.CrossRefGoogle Scholar
  39. 39.
    B. S. Todd and R. Stamper. The relative accuracy of a variety of medical diagnostic programs. Methods Inf Med, 33(4):402–416, 1994.Google Scholar
  40. 40.
    C. Ohmann, V. Moustakis, Q. Yang, and K. Lang. Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain. acute abdominal pain study group. Artif Intell Med, 8(1):23–36, 1996.CrossRefGoogle Scholar
  41. 41.
    F. H. Edwards and R. S. Davies. Use of a Bayesian algorithm in the computer-assisted diagnosis of appendicitis. Surgery, Gynecology & Obstetrics, 158(3):219–222, 1984.Google Scholar
  42. 42.
    D. H. Wilson, P. D. Wilson, R. G. Walmsley, J. C. Horrocks, and F. T. De Dombal. Diagnosis of acute abdominal pain in the accident and emergency department. The British Journal of Surgery, 64(4):250–254, 1977.CrossRefGoogle Scholar
  43. 43.
    F. Wiener, D. Laufer, and A. Ribak. Computer-aided diagnosis of odontogenic lesions. International Journal of Oral and Maxillofacial Surgery, 15(5):592–596, 1986.CrossRefGoogle Scholar
  44. 44.
    J. R. Iglesias, J. Esparza, C. Aruffo, and K. Maier-Hauff. Differential diagnosis of intraspinal neurinomas and meningiomas by means of a Bayesian system. Archivos de Neurobiologiá, 51(6):333–341, 1988.Google Scholar
  45. 45.
    F. H. Edwards, P. S. Schaefer, S. Callahan, G. M. Graeber, and R. A. Albus. Bayesian statistical theory in the preoperative diagnosis of pulmonary lesions. Chest, 92(5):888–891, 1987.CrossRefGoogle Scholar
  46. 46.
    G. H. Du Boulay, D. Teather, D. Harling, and G. Clarke. Improvement in the computer-assisted diagnosis of cerebral tumours. The British Journal of Radiology, 50(600):849–854, 1977.CrossRefGoogle Scholar
  47. 47.
    G. Lindberg, A. Björkman, and R. P. Knill-Jones. Computer aided diagnosis of jaundice. a comparison of two data bases. Scandinavian Journal of Gastroenterology. Supplement, 128:180–189, 1987.CrossRefGoogle Scholar
  48. 48.
    Y. Reisman, G. M. van Dam, C. H. Gips, S. M. Lavelle, B. Kanagaratnam, P. Niermeijer, P. Spoelstra, and O. de Vries. Physician’s working diagnosis compared to the euricterus real life data diagnostic tool trial in three jaundice databases: Euricterus dutch, independent prospective and independent retrospective. Hepato-gastroenterology, 44(17):1367–1375, 1997.Google Scholar
  49. 49.
    Y. Reisman, C. H. Gips, and S. M. Lavelle. Primary biliary cirrhosis: an electronic diagnostic tool trial based on symptoms, (past) history and signs only, using the european database euricterus. the euricterus pmg. Hepato-gastroenterology, 44(16):1104–1109, 1997.Google Scholar
  50. 50.
    S. M. Lavelle and B. Kanagaratnam. The information value of clinical data. International Journal of Bio-Medical Computing, 26(3):203–209, 1990.CrossRefGoogle Scholar
  51. 51.
    A. Malchow-Møller, C. Thomsen, P. Matzen, L. Mindeholm, B. Bjerregaard, S. Bryant, J. Hilden, J. Holst-Christensen, T. S. Johansen, and E. Juhl. Computer diagnosis in jaundice. Bayes’ rule founded on 1002 consecutive cases. Journal of Hepatology, 3(2):154–163, 1986.CrossRefGoogle Scholar
  52. 52.
    F. Begon, A. M. Lockhart, J. M. Métreau, and D. Dhumeaux. A computer-aided system for the diagnosis of hepato-biliary diseases. a comparison with the performance of physicians. Medical Informatics = Médecine et Informatique, 4(1):35–42, 1979.CrossRefGoogle Scholar
  53. 53.
    M. de Bernardinis, V. Violi, L. Roncoroni, M. Montanari, and A. Peracchia. Automated selection of high-risk patients with acute pancreatitis. Critical Care Medicine, 17(4):318–322, 1989.CrossRefGoogle Scholar
  54. 54.
    J. Polák, J. Polák, and A. Kubík. [The Bayesian statistical theory in the diagnosis of malignant and non-malignant diseases of the lung, pleura and mediastinum]. Casopís Lékarů Ceských, 132(20):609–615, 1993.Google Scholar
  55. 55.
    J. Wójtowicz and W. Adamczyk. A failure to improve radiologists’ performances in diagnosing pulmonary lesions by a computer-aided approach. RöFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin, 123(1):10–12, 1975.CrossRefGoogle Scholar
  56. 56.
    B. D. Monteith. Computerized expert system for the diagnosis of pulp-related pain. The International Journal of Prosthodontics, 4(1):30–36, 1991.Google Scholar
  57. 57.
    S. C. White. Computer-aided differential diagnosis of oral radiographic lesions. Dento Maxillo Facial Radiology, 18(2):53–59, 1989.Google Scholar
  58. 58.
    T. Chard. Qualitative probability versus quantitative probability in clinical diagnosis: a study using a computer simulation. Medical Decision Making: An International Journal of the Society for Medical Decision Making, 11(1):38–41, 1991.CrossRefGoogle Scholar
  59. 59.
    T. Chard. Human versus machine: a comparison of a computer ‘expert system’ with human experts in the diagnosis of vaginal discharge. International Journal of Bio-Medical Computing, 20(1-2):71–78, 1987.CrossRefGoogle Scholar
  60. 60.
    N. I. Kaliadin, N. P. Kulikova, V. T. Lekomtseva, A. A. Suntsov, and A. N. Sheĭnin. [The diagnosis of epilepsy in the interactive mode using computer technology]. Meditsinskaia Tekhnika, (3):40–42, 1996.Google Scholar
  61. 61.
    H. J. Bernelot Moens and J. K. van der Korst. Comparison of rheumatological diagnoses by a Bayesian program and by physicians. Methods of information in medicine, 30(3):187–193, 1991.Google Scholar
  62. 62.
    H. J. Moens and J. K. van der Korst. Development and validation of a computer program using Bayes’s theorem to support diagnosis of rheumatic disorders. Annals of the Rheumatic Diseases, 51(2):266–271, 1992.CrossRefGoogle Scholar
  63. 63.
    H. Kolles and K. Remberger. How to build a computer-assisted, diagnosis-finding system. An example in dermatopathology. Archives of Pathology & Laboratory Medicine, 115(10):1011–1015, 1991.Google Scholar
  64. 64.
    G. J. Brooks, R. E. Ashton, and R. J. Pethybridge. Dermis: a computer system for assisting primary-care physicians with dermatological diagnosis. The British Journal of Dermatology, 127(6):614–619, 1992.CrossRefGoogle Scholar
  65. 65.
    A. S. Leveille, K. J. Fritz, W. M. Jay, and S. J. Silverman. Bayes’ theorem in ophthalmologic computer diagnosis. Journal of Pediatric Ophthalmology and Strabismus, 19(2):94–96, 1982.Google Scholar
  66. 66.
    D. T. Nguyen, L. W. Diamond, G. Priolet, and C. Sultan. Expert system design in hematology diagnosis. Methods of Information in Medicine, 31(2):82–89, 1992.Google Scholar
  67. 67.
    F. Sigaux, M. Imbert, G. Priolet, J. J. Bucquen, C. Levy, and C. Sultan. [An aid in decision-making in hematology: characteristics and performances of the program. 200 cases of anemia]. Presse Médicale (Paris, France: 1983), 16(3):111–114, 1987.Google Scholar
  68. 68.
    A. Blinowska, G. Chatellier, A. Wojtasik, and J. Bernier. Diagnostica–a Bayesian decision-aid system–applied to hypertension diagnosis. IEEE Transactions on Bio-Medical Engineering, 40(3):230–236, 1993.CrossRefGoogle Scholar
  69. 69.
    K. S. Bay, S. J. Lee, D. P. Flathman, J. W. Roll, and W. Piercy. Application of step-wise discriminant analysis and Bayesian classification procedure in determining prognosis of acute myocardial infarction. Canadian Medical Association Journal, 115(9):887–892, 1976.Google Scholar
  70. 70.
    K. L. Lanctôt and C. A. Naranjo. Computer-assisted evaluation of adverse events using a Bayesian approach. Journal of Clinical Pharmacology, 34(2):142–147, 1994.Google Scholar
  71. 71.
    W. D. Jeans and A. F. Morris. The accuracy of radiological and computer dianoses in small bowel examinations in children. The British Journal of Radiology, 49(584):665–669, 1976.CrossRefGoogle Scholar
  72. 72.
    A. Bogusevicius, J. Pundzius, A. Maleckas, and L. Vilkauskas. Computer-aided diagnosis of the character of bowel obstruction. International Surgery, 84(3):225–228, 1999.Google Scholar
  73. 73.
    C. Ohmann, M. Künneke, R. Zaczyk, K. Thon, and W. Lorenz. Selection of variables using ‘independence bayes’ in computer-aided diagnosis of upper gastrointestinal bleeding. Statistics in Medicine, 5(5):503–515, 1986.CrossRefGoogle Scholar
  74. 74.
    W. B. Schwartz, G. A. Gorry, J. P. Kassirer, and A. Essig. Decision analysis and clinical judgment. The American Journal of Medicine, 55(3):459–472, 1973.CrossRefGoogle Scholar
  75. 75.
    A. S. Ginsberg. Decision Analysis in Clinical Patient Management with an Application to the Pleural Effusion Problem. PhD thesis, Dept. of Engineering-Economic Systems, Stanford University, 1970.Google Scholar
  76. 76.
    G. A. Gorry, J. P. Kassirer, A. Essig, and W. B. Schwartz. Decision analysis as the basis for computer-aided management of acute renal failure. The American Journal of Medicine, 55(3):473–484, 1973.CrossRefGoogle Scholar
  77. 77.
    P. Szolovits, R. S. Patil, and W. B. Schwartz. Artificial intelligence in medical diagnosis. Annals of Internal Medicine, 108(1):80–87, 1988.Google Scholar
  78. 78.
    D. E. Heckerman, E. J. Horvitz, and B. N. Nathwani. Toward normative expert systems: Part I. The pathfinder project. Methods of Information in Medicine, 31(2):90–105, 1992.Google Scholar
  79. 79.
    Edward H. Shortliffe. Mycin: A knowledge-based computer program applied to infectious diseases. In Annu Symp Comput Appl Med Care, pp. 66–69, 1977.Google Scholar
  80. 80.
    R. N. Goldberg and S. M. Weiss. An experimental transformation of a large expert knowledge base. Journal of Medical Systems, 6(1):41–52, 1982.CrossRefGoogle Scholar
  81. 81.
    G. A. Drastal and C. A. Kulikowski. Knowledge-based acquisition of rules for medical diagnosis. Journal of Medical Systems, 6(5):433–445, 1982.CrossRefGoogle Scholar
  82. 82.
    Peter G. Politakis. Using empirical analysis to refine expert system knowledge bases (seek). PhD thesis, New Brunswick, NJ, USA, 1983.Google Scholar
  83. 83.
    A. D. Vanker and W. Van Stoecker. An expert diagnostic program for dermatology. Computers and Biomedical Research, an International Journal, 17(3):241–247, 1984.CrossRefGoogle Scholar
  84. 84.
    S. I. Danilenko, A. F. Chernousov, A. P. Pozdniakov, V. I. Fokin, and E. F. Stranadko. [Differential diagnosis of esophageal cancer by using mathematical decision rules]. Voprosy Onkologii, 25(7):22–25, 1979.Google Scholar
  85. 85.
    M. A. Overby. Psyxpert: an expert system prototype for aiding psychiatrists in the diagnosis of psychotic disorders. Computers in Biology and Medicine, 17(6):383–393, 1987.CrossRefGoogle Scholar
  86. 86.
    R. T. Plant, S. Murrell, and H. R. Moreno. Prototype decision support system for a differential diagnosis of psychotic, mood, and organic mental disorders: Part II. Medical Decision Making: an International Journal of the Society for Medical Decision Making, 14(3):273–288, 1994.CrossRefGoogle Scholar
  87. 87.
    E. L. Kinney, D. Brafman, and R. J. Wright. An expert system on the diagnosis of ascites. Computers and Biomedical Research, an International Journal, 21(2):169–173, 1988.CrossRefGoogle Scholar
  88. 88.
    P. A. Riss and H. Koelbl. Development of an expert system for preoperative assessment of female urinary incontinence. International Journal of Bio-Medical Computing, 22(3-4):217–223, 1988.CrossRefGoogle Scholar
  89. 89.
    J. Ruszkowski. Early pregnancy disorders: expert knowledge based consultation. Journal of Perinatal Medicine, 16(4):289–297, 1988.CrossRefGoogle Scholar
  90. 90.
    M. Ivandic, Y. Ogurol, W. Hofmann, and W. G. Guder. From a urinalysis strategy to an evaluated urine protein expert system. Methods of Information in Medicine, 39(1):93–98, 2000.Google Scholar
  91. 91.
    R. Hofestadt. A rule based system for the detection of metabolic diseases. Medinfo. MEDINFO, 8 Pt 2:964–968, 1995.Google Scholar
  92. 92.
    J. Joch, T. Bürkle, and J. Dudeck. Decision support for infectious diseases–a working prototype. Studies in Health Technology and Informatics, 77:812–816, 2000.Google Scholar
  93. 93.
    P. J. Lucas, R. W. Segaar, and A. R. Janssens. Hepar: an expert system for the diagnosis of disorders of the liver and biliary tract. Liver, 9(5):266–275, 1989.Google Scholar
  94. 94.
    R. Cavestri, L. Radice, V. D’Angelo, and E. Longhini. Focus. An expert system for the clinical diagnosis of the location of acute neurologic events. Minerva Medica, 82(12):815–820, 1991.Google Scholar
  95. 95.
    G. Rom, G. Schwarz, R. Grims, E. Rumpl, G. Pfurtscheller, and V. Haase. Braindex: an interactive, knowledge-based system supporting brain death diagnosis. Methods of Information in Medicine, 29(3):193–199, 1990.Google Scholar
  96. 96.
    Y. Matsumura. Rhinos: a consultation system for diagnosis of headache and facial pain. Computer Methods and Programs in Biomedicine, 23(1):65–71, 1986.MathSciNetCrossRefGoogle Scholar
  97. 97.
    R. N. Shiffman and R. A. Greenes. Use of augmented decision tables to convert probabilistic data into clinical algorithms for the diagnosis of appendicitis. In Annual Symposium on Computer Application in Medical Care, pp. 686–690, 1991.Google Scholar
  98. 98.
    A. Kar, G. E. Miller, and S. V. Sheppard. Pulmonologist: a computer-based diagnosis system for pulmonary diseases. International Journal of Bio-Medical Computing, 21(3-4):223–235, 1987.CrossRefGoogle Scholar
  99. 99.
    P. E. File, P. I. Dugard, and A. S. Houston. Evaluation of the use of induction in the development of a medical expert system. Computers and Biomedical Research, an International Journal, 27(5):383–395, 1994.CrossRefGoogle Scholar
  100. 100.
    J. P. Baak and P. H. Kurver. Development and use of a rule-based pathology expert consultation system. Analytical and Quantitative Cytology and Histology/The International Academy of Cytology [and] American Society of Cytology, 10(3):214–218, 1988.Google Scholar
  101. 101.
    R. Varma and V. Chankong. Computer-aided decisions for prospective hysterectomy screening. Health Matrix, 7(3):30–32, 1989.Google Scholar
  102. 102.
    Carlos Ordonez. Association rule discovery with the train and test approach for heart disease prediction. IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 10(2):334–343, 2006.CrossRefGoogle Scholar
  103. 103.
    Mila Kwiatkowska, Stella S. Atkins, Najib T. Ayas, and Frank F. Ryan. Knowledge-based data analysis: first step toward the creation of clinical prediction rules using a new typicality measure. IEEE Transactions on Information Technology in Biomedicine, 11(6):651–660, 2007.CrossRefGoogle Scholar
  104. 104.
    Markos G. Tsipouras, Costas Voglis, and Dimitrios I. Fotiadis. A framework for fuzzy expert system creation–application to cardiovascular diseases. IEEE Transactions on Bio-Medical Engineering, 54(11):2089–2105, 2007.CrossRefGoogle Scholar
  105. 105.
    Saul Amarel. Introduction to the comtex microfiche edition of the rutgers university artificial intelligence research reports: the history of artificial intelligence at rutgers university. AI Magazine, 6(3):192–202, 1985.Google Scholar
  106. 106.
    Alex S. C. Lee, James H. Cutts, Gordon C. Sharp, and Joyce A. Mitchell. Ai/learn network. Journal of Medical Systems, 11(5):349–358, 1987.CrossRefGoogle Scholar
  107. 107.
    James F. Porter, C. Lawrence, KingslandIii, Donald A. B. Lindberg, Indravadan Shah, James M. Benge, Susan E. Hazelwood, Donald R. Kay, Mitsuo Homma, Masashi Akizuki, Makoto Takano, and Gordon C. Sharp. The ai/rheum knowledge-based computer consultant system in rheumatology. Performance in the diagnosis of 59 connective tissue disease patients from Japan. Arthritis & Rheumatism, 31(2):219–226, 1988.CrossRefGoogle Scholar
  108. 108.
    S. Chokhani. Correspondences between biomathematical and causal models for clinical decision making. Journal of Medical Systems, 5(4):249–264, 1981.CrossRefGoogle Scholar
  109. 109.
    G. Banks. Artificial intelligence in medical diagnosis: the internist/caduceus approach. Critical Reviews in Medical Informatics, 1(1):23–54, 1986.Google Scholar
  110. 110.
    Randolph Miller. Computer-assisted diagnostic decision support: history, challenges, and possible paths forward. Advances in Health Sciences Education, 14(0):89–106, 2009.CrossRefGoogle Scholar
  111. 111.
    G. Werner. Methuselah–an expert system for diagnosis in geriatric psychiatry. Computers and Biomedical Research, an International Journal, 20(5):477–488, 1987.CrossRefGoogle Scholar
  112. 112.
    A. S. Rigby. Development of a scoring system to assist in the diagnosis of rheumatoid arthritis. Methods of Information in Medicine, 30(1):23–29, 1991.MathSciNetGoogle Scholar
  113. 113.
    W. J. Long, S. Naimi, and M. G. Criscitiello. Development of a knowledge base for diagnostic reasoning in cardiology. Computers and Biomedical Research, an International Journal, 25(3):292–311, 1992.CrossRefGoogle Scholar
  114. 114.
    J. Pelz, V. Arendt, and J. Kunze. Computer assisted diagnosis of malformation syndromes: an evaluation of three databases (lddb, possum, and syndroc). American Journal of Medical Genetics, 63(1):257–267, 1996.CrossRefGoogle Scholar
  115. 115.
    L. A. Zadeh. Biological applications of the theory of fuzzy sets and systems. In International Symposium on Biocybernetics of Central Nervous System, pp. 199–206. Little, Brown and Company, Boston, 1969.Google Scholar
  116. 116.
    E. Sanchez. Medical Diagnosis and Composite Fuzzy Relations, pp. 437–444. Amsterdam: North-Holland, 1979.Google Scholar
  117. 117.
    L. A. Zadeh. Toward a theory of fuzzy systems, pp. 209–245. Holt, Rinehart and Winston, New York, 1971.Google Scholar
  118. 118.
    H. Leitich, H. P. Kiener, G. Kolarz, C. Schuh, W. Graninger, and K. P. Adlassnig. A prospective evaluation of the medical consultation system cadiag-ii/rheuma in a rheumatological outpatient clinic. Methods Inf Med, 40(3):213–220, 2001.Google Scholar
  119. 119.
    K. P. Adlassnig, W. Scheithauer, and G. Grabner. Computer-assisted diagnosis and its application in pancreatic diseases. Acta Med Austriaca, 11(3-4):125–134, 1984.Google Scholar
  120. 120.
    Agata Ciabattoni, Thomas Vetterlein, and Klaus-Peter P. Adlassnig. A formal logical framework for cadiag-2. Studies in Health Technology and Informatics, 150:648–652, 2009.Google Scholar
  121. 121.
    C. A. Holzmann, C. A. Perez, and E. Rosselot. A fuzzy model for medical diagnosis. Medical Progress Through Technology, 13(4):171–178, 1988.Google Scholar
  122. 122.
    C. K. Lim, K. M. Yew, K. H. Ng, and B. J. Abdullah. A proposed hierarchical fuzzy inference system for the diagnosis of arthritic diseases. Australasian Physical & Engineering Sciences in Medicine, 25(3):144–150, 2002.CrossRefGoogle Scholar
  123. 123.
    Kavishwar Wagholikar, Sanjeev Mangrulkar, Ashok Deshpande, and Vijayraghavan Sundararajan. Evaluation of fuzzy relation method for medical decision support. Journal of Medical Systems, pp. 1–7, 2010. doi: 10.1007/s10916-010-9472-5.
  124. 124.
    Mohammad-R R. Akbarzadeh-T and Majid Moshtagh-Khorasani. A hierarchical fuzzy rule-based approach to aphasia diagnosis. Journal of Biomedical Informatics, 40(5):465–475, 2007.Google Scholar
  125. 125.
    M. G. Tsipouras, T. P. Exarchos, D. I. Fotiadis, A. P. Kotsia, K. V. Vakalis, K. K. Naka, and L. K. Michalis. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE Transactions on Information Technology in Biomedicine, 12(4):447–458, 2008.CrossRefGoogle Scholar
  126. 126.
    Satoru Sakaguchi, Katsunari Takifuji, Seizaburo Arita, and Hiroki Yamaue. Development of an early diagnostic system using fuzzy theory for postoperative infections in patients with gastric cancer. Digestive Surgery, 21(3):210–214, 2004.CrossRefGoogle Scholar
  127. 127.
    T. Ichimura, E. Tazaki, and K. Yoshida. Extraction of fuzzy rules using neural networks with structure level adaptation–verification to the diagnosis of hepatobiliary disorders. International Journal of Bio-Medical Computing, 40(2):139–146, 1995.CrossRefGoogle Scholar
  128. 128.
    Okure U. Obot and Faith-Michael M. Uzoka. Experimental study of fuzzy-rule based management of tropical diseases: case of malaria diagnosis. Studies in Health Technology and Informatics, 137:328–339, 2008.Google Scholar
  129. 129.
    L. Kuncheva. An aggregation of pro and con evidence for medical decision support systems. Computers in Biology and Medicine, 23(6):417–424, 1993.CrossRefGoogle Scholar
  130. 130.
    J. M. Barreto and F. M. de Azevedo. Connectionist expert systems as medical decision aid. Artificial Intelligence in Medicine, 5(6):515–523, 1993.CrossRefGoogle Scholar
  131. 131.
    Elif Derya D. Ubeyli and Inan Güler. Automatic detection of erthemato-squamous diseases using adaptive neuro-fuzzy inference systems. Computers in Biology and Medicine, 35(5):421–433, 2005.CrossRefGoogle Scholar
  132. 132.
    Charles O. Akinyokun, Okure U. Obot, Faith-Michael M. Uzoka, and John J. Andy. A neuro-fuzzy decision support system for the diagnosis of heart failure. Studies in Health Technology and Informatics, 156:231–244, 2010.Google Scholar
  133. 133.
    Mesut Tez and Selda Tez. Neurofuzzy systems for the prediction of outcome in acute lower gastrointestinal hemorrhage. European Journal of Gastroenterology & Hepatology, 20(8):183, 2008.Google Scholar
  134. 134.
    L. Godo, R. L. de Mántaras, J. Puyol-Gruart, and C. Sierra. Renoir, pneumon-ia and terap-ia: three medical applications based on fuzzy logic. Artificial Intelligence in Medicine, 21(1–3):153–162, 2001.CrossRefGoogle Scholar
  135. 135.
    E. Binaghi, O. De Giorgi, G. Maggi, T. Motta, and A. Rampini. Computer-assisted diagnosis of postmenopausal osteoporosis using a fuzzy expert system shell. Computers and Biomedical Research, an International Journal, 26(6):498–516, 1993.CrossRefGoogle Scholar
  136. 136.
    S. Zahan. A fuzzy approach to computer-assisted myocardial ischemia diagnosis. Artificial Intelligence in Medicine, 21(1–3):271–275, 2001.CrossRefGoogle Scholar
  137. 137.
    M. D. Innis. Clinical problem solving–the role of expert laboratory systems. Medical Informatics = Médecine et Informatique, 22(3):251–261, 1997.CrossRefGoogle Scholar
  138. 138.
    M. B. Causer, G. A. Findlay, C. R. Hawes, and D. R. Boswell. Assessment of a computerized system for the diagnosis of iron deficiency. Pathology, 26(1):37–39, 1994.CrossRefGoogle Scholar
  139. 139.
    Doraid Dalalah and Sami Magableh. A remote fuzzy multicriteria diagnosis of sore throat. Telemedicine Journal and e-Health: the Official Journal of the American Telemedicine Association, 14(7):656–665, 2008.CrossRefGoogle Scholar
  140. 140.
    C. A. Pena-Reyes and M. Sipper. A fuzzy-genetic approach to breast cancer diagnosis. Artificial Intelligence in Medicine, 17(2):131–155, 1999.CrossRefGoogle Scholar
  141. 141.
    N. Belacel, P. Vincke, J. M. Scheiff, and M. R. Boulassel. Acute leukemia diagnosis aid using multicriteria fuzzy assignment methodology. Computer Methods and Programs in Biomedicine, 64(2):145–151, 2001.CrossRefGoogle Scholar
  142. 142.
    R. Jain and A. Abraham. A comparative study of fuzzy classification methods on breast cancer data. Australasian Physical & Engineering Sciences in Medicine/Supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine, 27(4):213–218, 2004.Google Scholar
  143. 143.
    L. I. Kuncheva. Evaluation of computerized medical diagnostic decisions via fuzzy sets. International Journal of Bio-Medical Computing, 28(1–2):91–100, 1991.CrossRefGoogle Scholar
  144. 144.
    Voula C. Georgopoulos and Chrysotomos D. Stylios. Diagnosis support using fuzzy cognitive maps combined with genetic algorithms. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6226–6229, 2009.Google Scholar
  145. 145.
    R. I. John and P. R. Innocent. Modeling uncertainty in clinical diagnosis using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(6):1340–1350, 2005.CrossRefGoogle Scholar
  146. 146.
    Pasi Luukka and Tapio Leppälampi. Similarity classifier with generalized mean applied to medical data. Computers in Biology and Medicine, 36(9):1026–1040, 2006.CrossRefGoogle Scholar
  147. 147.
    Vahid Khatibi and Gholam L. I. Montazer. Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artificial Intelligence in Medicine, 47(1):43–52, 2009.CrossRefGoogle Scholar
  148. 148.
    Han-Ying Y. Kao. Diagnostic reasoning and medical decision-making with fuzzy influence diagrams. Computer Methods and Programs in Biomedicine, 90(1):9–16, 2008.CrossRefGoogle Scholar
  149. 149.
    Metin Akay, Maurice Cohen, and Donna Hudson. Fuzzy sets in life sciences. Fuzzy Sets Syst., 90(2):219–224, 1997.CrossRefGoogle Scholar
  150. 150.
    W. G. Baxt. Use of an artificial neural network for the diagnosis of myocardial infarction. Annals of Internal Medicine, 115(11):843–848, 1991.Google Scholar
  151. 151.
    P. J. Lisboa. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks: the Official Journal of the International Neural Network Society, 15(1):11–39, 2002.CrossRefGoogle Scholar
  152. 152.
    R. L. Kennedy, R. F. Harrison, A. M. Burton, H. S. Fraser, W. G. Hamer, D. MacArthur, R. McAllum, and D. J. Steedman. An artificial neural network system for diagnosis of acute myocardial infarction (ami) in the accident and emergency department: evaluation and comparison with serum myoglobin measurements. Computer Methods and Programs in Biomedicine, 52(2):93–103, 1997.CrossRefGoogle Scholar
  153. 153.
    M. L. Astion, M. H. Wener, R. G. Thomas, G. G. Hunder, and D. A. Bloch. Application of neural networks to the classification of giant cell arteritis. Arthritis and Rheumatism, 37(5):760–770, 1994.CrossRefGoogle Scholar
  154. 154.
    J. Li, Y. Mu, and L. Zhang. [Study of the pulmonary heart disease computer-aided diagnosis system based on combining neural network]. Sheng wu yi xue gong cheng xue za zhi = Journal of Biomedical Engineering = Shengwu Yixue Gongchengxue Zazhi, 18(4):573–576, 2001.Google Scholar
  155. 155.
    Resul Das, Ibrahim Turkoglu, and Abdulkadir Sengur. Diagnosis of valvular heart disease through neural networks ensembles. Computer Methods and Programs in Biomedicine, 93(2):185–191, 2009.CrossRefGoogle Scholar
  156. 156.
    Lutz Leistritz, Miroslaw Galicki, Eberhard Kochs, Ernst Bernhard B. Zwick, Clemens Fitzek, Jürgen R. Reichenbach, and Herbert Witte. Application of generalized dynamic neural networks to biomedical data. IEEE Transactions on Bio-Medical Engineering, 53(11):2289–2299, 2006.CrossRefGoogle Scholar
  157. 157.
    I. G. Vlachonikolis, D. A. Karras, M. J. Hatzakis, and N. Paritsis. Improved statistical classification methods in computerized psychiatric diagnosis. Medical Decision Making: an International Journal of the Society for Medical Decision Making, 20(1):95–103, 2000.CrossRefGoogle Scholar
  158. 158.
    N. H. Mann and M. D. Brown. Artificial intelligence in the diagnosis of low back pain. The Orthopedic Clinics of North America, 22(2):303–314, 1991.Google Scholar
  159. 159.
    Malek Adjouadi, Melvin Ayala, Mercedes Cabrerizo, Nuannuan Zong, Gabriel Lizarraga, and Mark Rossman. Classification of leukemia blood samples using neural networks. Annals of Biomedical Engineering, 38(4):1473–1482, 2010.CrossRefGoogle Scholar
  160. 160.
    Nuannuan Zong, Malek Adjouadi, and Melvin Ayala. Optimizing the classification of acute lymphoblastic leukemia and acute myeloid leukemia samples using artificial neural networks. Biomedical Sciences Instrumentation, 42:261–266, 2006.Google Scholar
  161. 161.
    Jonathan L. Jesneck, Loren W. Nolte, Jay A. Baker, Carey E. Floyd, and Joseph Y. Lo. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Medical Physics, 33(8):2945–2954, 2006.CrossRefGoogle Scholar
  162. 162.
    Rohit Dua, Daryl G. Beetner, William V. Stoecker, and Donald C. Wunsch. Detection of basal cell carcinoma using electrical impedance and neural networks. IEEE Transactions on Bio-Medical Engineering, 51(1):66–71, 2004.CrossRefGoogle Scholar
  163. 163.
    Angelo Andriulli, Enzo Grossi, Massimo Buscema, Alberto Pilotto, Virginia Festa, and Francesco Perri. Artificial neural networks can classify uninvestigated patients with dyspepsia. European Journal of Gastroenterology & Hepatology, 19(12):1055–1058, 2007.CrossRefGoogle Scholar
  164. 164.
    Bruno Annibale and Edith Lahner. Assessing the severity of atrophic gastritis. European Journal of Gastroenterology & Hepatology, 19(12):1059–1063, 2007.CrossRefGoogle Scholar
  165. 165.
    J. S. Shang, Y. S. Lin, and A. M. Goetz. Diagnosis of mrsa with neural networks and logistic regression approach. Health Care Management Science, 3(4):287–297, 2000.CrossRefGoogle Scholar
  166. 166.
    E. Pesonen. Is neural network better than statistical methods in diagnosis of acute appendicitis? Studies in Health Technology and Informatics, 43 Pt A:377–381, 1997.Google Scholar
  167. 167.
    G. Rovetta, G. Bianchi, P. Monteforte, L. Buffrini, and G. Ghirardo. Automated diagnosis and characterization of lyme disease using neural network analysis. The Journal of Rheumatology, 22(3):571–572, 1995.Google Scholar
  168. 168.
    Enzo Grossi, Massimo P. Buscema, David Snowdon, and Piero Antuono. Neuropathological findings processed by artificial neural networks (anns) can perfectly distinguish alzheimer’s patients from controls in the nun study. BMC Neurology, 7:15+, 2007.Google Scholar
  169. 169.
    Orhan Er, Cengiz Sertkaya, Feyzullah Temurtas, and A. Cetin Tanrikulu. A comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis using neural networks and artificial immune system. Journal of Medical Systems, 33(6):485–492, 2009.CrossRefGoogle Scholar
  170. 170.
    C. Lagor, D. Aronsky, M. Fiszman, and P. J. Haug. Automatic identification of patients eligible for a pneumonia guideline: comparing the diagnostic accuracy of two decision support models. Studies in Health Technology and Informatics, 84(Pt 1):493–497, 2001.Google Scholar
  171. 171.
    Yogender Aggarwal, Bhuwan Mohan M. Karan, Barda Nand N. Das, and Rakesh Kumar K. Sinha. An unsupervised neural network to predict the level of heat stress. Journal of Clinical Monitoring and Computing, 22(6):425–430, 2008.CrossRefGoogle Scholar
  172. 172.
    D. J. Sargent. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer, 91(8 Suppl):1636–1642, 2001.CrossRefGoogle Scholar
  173. 173.
    Theodore Anagnostou, Mesut Remzi, Michael Lykourinas, and Bob Djavan. Artificial neural networks for decision-making in urologic oncology. European Urology, 43(6):596–603, 2003.CrossRefGoogle Scholar
  174. 174.
    G. Schwarzer, W. Vach, and M. Schumacher. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Statistics in Medicine, 19(4):541–561, 2000.CrossRefGoogle Scholar
  175. 175.
    Rudy Setiono, Wee K. Leow, and James Y. L. Thong. Opening the neural network black box: an algorithm for extracting rules from function approximating artificial neural networks. In ICIS ’00: Proceedings of the twenty first international conference on Information systems, pp. 176–186, Atlanta, GA, USA, 2000. Association for Information Systems.Google Scholar
  176. 176.
    Elizabeth S. Burnside. Bayesian networks: computer-assisted diagnosis support in radiology. Academic Radiology, 12(4):422–430, 2005.CrossRefGoogle Scholar
  177. 177.
    W. W. Chapman and P. J. Haug. Bayesian modeling for linking causally related observations in chest x-ray reports. In AMIA Symposium, pp. 587–591, 1998.Google Scholar
  178. 178.
    G. J. Price, W. G. McCluggage, M. L. Morrison M, G. McClean, L. Venkatraman, J. Diamond, H. Bharucha, R. Montironi, P. H. Bartels, D. Thompson, and P. W. Hamilton. Computerized diagnostic decision support system for the classification of preinvasive cervical squamous lesions. Human Pathology, 34(11):1193–1203, 2003.CrossRefGoogle Scholar
  179. 179.
    Susan M. Maskery, Hai Hu, Jeffrey Hooke, Craig D. Shriver, and Michael N. Liebman. A Bayesian derived network of breast pathology co-occurrence. Journal of Biomedical Informatics, 41(2):242–250, 2008.CrossRefGoogle Scholar
  180. 180.
    S. Raza, Yachna Sharma, Qaiser Chaudry, Andrew N. Young, and May D. Wang. Automated classification of renal cell carcinoma subtypes using scale invariant feature transform. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009:6687–6690, 2009.Google Scholar
  181. 181.
    Vibha Anand and Stephen M. Downs. Probabilistic asthma case finding: a noisy or reformulation. In Annual AMIA Symposium, pp. 6–10, 2008.Google Scholar
  182. 182.
    Bilal A. Ahmed, Michael E. Matheny, Phillip L. Rice, John R. Clarke, and Omolola I. Ogunyemi. A comparison of methods for assessing penetrating trauma on retrospective multi-center data. Journal of Biomedical Informatics, 42(2):308–316, 2009.CrossRefGoogle Scholar
  183. 183.
    D. Aronsky, M. Fiszman, W. W. Chapman, and P. J. Haug. Combining decision support methodologies to diagnose pneumonia. In AMIA Symposium, pp. 12–16, 2001.Google Scholar
  184. 184.
    In Sook S. Cho and Peter J. Haug. The contribution of nursing data to the development of a predictive model for the detection of acute pancreatitis. Studies in Health Technology and Informatics, 122:139–142, 2006.Google Scholar
  185. 185.
    W. J. Long, H. Fraser, and S. Naimi. Reasoning requirements for diagnosis of heart disease. Artificial Intelligence in Medicine, 10(1):5–24, 1997.CrossRefGoogle Scholar
  186. 186.
    M. Korver and P. J. Lucas. Converting a rule-based expert system into a belief network. Medical Informatics = Médecine et Informatique, 18(3):219–241, 1993.CrossRefGoogle Scholar
  187. 187.
    M. Suojanen, S. Andreassen, and K. G. Olesen. A method for diagnosing multiple diseases in munin. IEEE Transactions on Bio-Medical Engineering, 48(5):522–532, 2001.CrossRefGoogle Scholar
  188. 188.
    David Foreman, Stephanie Morton, and Tamsin Ford. Exploring the clinical utility of the development and well-being assessment (dawba) in the detection of hyperkinetic disorders and associated diagnoses in Clinical practice. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(4):460–470, 2009.Google Scholar
  189. 189.
    M. A. Shwe, B. Middleton, D. E. Heckerman, M. Henrion, E. J. Horvitz, H. P. Lehmann, and G. F. Cooper. Probabilistic diagnosis using a reformulation of the internist-1/qmr knowledge base. I. The probabilistic model and inference algorithms. Methods of Information in Medicine, 30(4):241–255, 1991.Google Scholar
  190. 190.
    Bastian Wemmenhove, Joris Mooij, Wim Wiegerinck, Martijn Leisink, Hilbert Kappen, and Jan Neijt. Inference in the promedas medical expert system. In Artificial Intelligence in Medicine, Lecture Notes in Computer Science, chapter 61, pp. 456–460. 2007.Google Scholar
  191. 191.
    M. Cléret, F. Le Duff, A. Fresnel, and P. Le Beux. Diamed: a probabilistic diagnostic aid system on the web. Studies in Health Technology and Informatics, 84(Pt 1):429–433, 2001.Google Scholar
  192. 192.
    Zuoshuang Xiang, Rebecca M. Minter, Xiaoming Bi, Peter J. Woolf, and Yongqun He. minituba: medical inference by network integration of temporal data using Bayesian analysis. Bioinformatics (Oxford, England), 23(18):2423–2432, 2007.Google Scholar
  193. 193.
    S. Wong, D. Wu, and Y. Yao. Critical remarks on the computational complexity in probabilistic inference. In Guoyin Wang, Qing Liu, Yiyu Yao, and Andrzej Skowron, editors, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, volume 2639 of Lecture Notes in Computer Science, chapter 114, pp. 587–588–588. Springer, Berlin, 2003.Google Scholar
  194. 194.
    Kwokleung Chan, Te-Won W. Lee, Pamela A. Sample, Michael H. Goldbaum, Robert N. Weinreb, and Terrence J. Sejnowski. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Transactions on Bio-Medical Engineering, 49(9):963–974, 2002.Google Scholar
  195. 195.
    Joarder Kamruzzaman and Rezaul K. Begg. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Transactions on Bio-Medical Engineering, 53(12 Pt 1):2479–2490, 2006.CrossRefGoogle Scholar
  196. 196.
    B. R. Brewer, S. Pradhan, G. Carvell, and A. Delitto. Feature selection for classification based on fine motor signs of parkinson’s disease. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009:214–217, 2009.Google Scholar
  197. 197.
    C. Lu, T. Van Gestel, J. A. Suykens, S. Van Huffel, I. Vergote, and D. Timmerman. Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artificial Intelligence in Medicine, 28(3):281–306, 2003.CrossRefGoogle Scholar
  198. 198.
    Francesco Camastra and Alessandro Verri. A novel kernel method for clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):801–805, 2005.CrossRefGoogle Scholar
  199. 199.
    Elisabetta La Torre, Tatiana Tommasi, Barbara Caputo, and Giovanni E. Gigante. Kernel methods for melanoma recognition. Studies in Health Technology and Informatics, 124:983–988, 2006.Google Scholar
  200. 200.
    Qianfei Yuan, Congzhong Cai, Hanguang Xiao, Xinghua Liu, and Yufeng Wen. Svm-aided cancer diagnosis based on the concentration of the macroelement and microelement in human blood. Sheng wu yi xue gong cheng xue za zhi = Journal of Biomedical Engineering = Shengwu Yixue Gongchengxue Zazhi, 24(3):513–518, 2007.Google Scholar
  201. 201.
    Jennifer Listgarten, Sambasivarao Damaraju, Brett Poulin, Lillian Cook, Jennifer Dufour, Adrian Driga, John Mackey, David Wishart, Russ Greiner, and Brent Zanke. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 10(8):2725–2737, 2004.Google Scholar
  202. 202.
    Baek Hwan H. Cho, Hwanjo Yu, Kwang-Won W. Kim, Tae Hyun H. Kim, In Young Y. Kim, and Sun I. Kim. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine, 42(1):37–53, 2008.CrossRefGoogle Scholar
  203. 203.
    K. Kabasawa and S. Kaihara. A sequential diagnostic model for medical questioning. Medical Informatics = Médecine et Informatique, 6(3):175–185, 1981.CrossRefGoogle Scholar
  204. 204.
    B. S. Duran and T. O. Lewis. An application of cluster analysis to the construction of a diagnostic classification. Computers in Biology and Medicine, 4(2):183–188, 1974.CrossRefGoogle Scholar
  205. 205.
    R. Thurmayr, M. Otte, and R. Thurmayr. [Computer-aided diagnosis for pancreatic function test (author’s transl)]. Langenbecks Archiv für Chirurgie, 339:253–257, 1975.CrossRefGoogle Scholar
  206. 206.
    D. P. McKenzie, P. D. McGorry, C. S. Wallace, L. H. Low, D. L. Copolov, and B. S. Singh. Constructing a minimal diagnostic decision tree. Methods of Information in Medicine, 32(2):161–166, 1993.Google Scholar
  207. 207.
    B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski. Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. Medical Physics, 27(7):1509–1522, 2000.CrossRefGoogle Scholar
  208. 208.
    W. J. Long, J. L. Griffith, H. P. Selker, and R. B. D’Agostino. A comparison of logistic regression to decision-tree induction in a medical domain. Computers and Biomedical Research, an International Journal, 26(1):74–97, 1993.CrossRefGoogle Scholar
  209. 209.
    M. Drent, M. A. van Nierop, F. A. Gerritsen, E. F. Wouters, and P. G. Mulder. A computer program using balf-analysis results as a diagnostic tool in interstitial lung diseases. American Journal of Respiratory and Critical Care Medicine, 153(2):736–741, 1996.Google Scholar
  210. 210.
    C. L. Tsien, H. S. Fraser, W. J. Long, and R. L. Kennedy. Using classification tree and logistic regression methods to diagnose myocardial infarction. Studies in Health Technology and Informatics, 52 Pt 1:493–497, 1998.Google Scholar
  211. 211.
    S. M. Rudolfer, G. Paliouras, and I. S. Peers. A comparison of logistic regression to decision tree induction in the diagnosis of carpal tunnel syndrome. Computers and Biomedical Research, an International Journal, 32(5):391–414, 1999.CrossRefGoogle Scholar
  212. 212.
    S. Kable, R. Henry, R. Sanson-Fisher, M. Ireland, R. Corkrey, and J. Cockburn. Childhood asthma: can computers aid detection in general practice? The British Journal of General Practice: the Journal of the Royal College of General Practitioners, 51(463):112–116, 2001.Google Scholar
  213. 213.
    E. Wayne Holden, Elizabeth Grossman, Hoang Thanh T. Nguyen, Margaret J. Gunter, Becky Grebosky, Ann Von Worley, Leila Nelson, Scott Robinson, and David J. Thurman. Developing a computer algorithm to identify epilepsy cases in managed care organizations. Disease Management: DM, 8(1):1–14, 2005.CrossRefGoogle Scholar
  214. 214.
    R. J. Marshall. Partitioning methods for classification and decision making in medicine. Statistics in Medicine, 5(5):517–526, 1986.CrossRefGoogle Scholar
  215. 215.
    K. J. Cios, R. E. Freasier, L. S. Goodenday, and L. T. Andrews. An expert system for diagnosis of coronary artery stenosis based on 201tl scintigrams using the dempster-shafer theory of evidence. Computer Applications in the Biosciences: CABIOS, 6(4):333–342, 1990.Google Scholar
  216. 216.
    N. Matsuda. Computer-assisted laboratory diagnosis. Rinsho Byori. The Japanese Journal of Clinical Pathology, 39(3):243–251, 1991.MathSciNetGoogle Scholar
  217. 217.
    T. Sekiya, A. Watanabe, and M. Saito. The use of modified constellation graph method for computer-aided classification of congenital heart diseases. IEEE Transactions on Bio-Medical Engineering, 38(8):814–820, 1991.CrossRefGoogle Scholar
  218. 218.
    J. C. Tohá, S. Vásquez, P. Fuentes, and M. A. Soto. Algorithm for assisting medical diagnosis. Computer Methods and Programs in Biomedicine, 39(3-4):303–309, 1993.CrossRefGoogle Scholar
  219. 219.
    R. Stamper, B. S. Todd, and P. Macpherson. Case-based explanation for medical diagnostic programs, with an example from gynaecology. Methods of Information in Medicine, 33(2):205–213, 1994.Google Scholar
  220. 220.
    C. D. Evans and R. M. Winter. A case-based learning approach to grouping cases with multiple malformations. M.D. Computing: Computers in Medical Practice, 12(2):127–136, 1995.Google Scholar
  221. 221.
    S. Dzeroski and N. Lavrac. Rule induction and instance-based learning applied in medical diagnosis. Technology and Health Care, 4(2):203–221, 1996.Google Scholar
  222. 222.
    M. C. Jaulent, C. Le Bozec, E. Zapletal, and P. Degoulet. Case based diagnosis in histopathology of breast tumours. Studies in Health Technology and Informatics, 52 Pt 1:544–548, 1998.Google Scholar
  223. 223.
    A. S. Ochi-Okorie. Disease diagnosis validation in tropix using CBR. Artificial Intelligence in Medicine, 12(1):43–60, 1998.CrossRefGoogle Scholar
  224. 224.
    E. Armengol, A. Palaudàries, and E. Plaza. Individual prognosis of diabetes long-term risks: a CBR approach. Methods of information in medicine, 40(1):46–51, 2001.Google Scholar
  225. 225.
    G. I. Paterson. A rough sets approach to patient classification in medical records. Medinfo. MEDINFO, 8 Pt 2:910, 1995.Google Scholar
  226. 226.
    W. Z. Liu, A. P. White, M. T. Hallissey, and J. W. Fielding. Machine learning techniques in early screening for gastric and oesophageal cancer. Artificial Intelligence in Medicine, 8(4):327–341, 1996.CrossRefGoogle Scholar
  227. 227.
    K. Viikki, E. Kentala, M. Juhola, and I. Pyykkö. Decision tree induction in the diagnosis of otoneurological diseases. Medical Informatics and the Internet in Medicine, 24(4):277–289, 1999.CrossRefGoogle Scholar
  228. 228.
    M. Zorman, H. P. Eich, P. Kokol, and C. Ohmann. Comparison of three databases with a decision tree approach in the medical field of acute appendicitis. Studies in Health Technology and Informatics, 84(Pt 2):1414–1418, 2001.Google Scholar
  229. 229.
    M. R. Ortíz-Posadas, J. F. Martínez-Trinidad, and J. Ruíz-Shulcloper. A new approach to differential diagnosis of diseases. International Journal of Bio-Medical Computing, 40(3):179–185, 1996.CrossRefGoogle Scholar
  230. 230.
    P. Ramnarayan, N. Cronje, R. Brown, R. Negus, B. Coode, P. Moss, T. Hassan, W. Hamer, and J. Britto. Validation of a diagnostic reminder system in emergency medicine: a multi-centre study. Emerg Med J, 24(9):619–624, 2007.CrossRefGoogle Scholar
  231. 231.
    Kaizhu Huang, Haiqin Yang, Irwin King, and Michael R. Lyu. Maximizing sensitivity in medical diagnosis using biased minimax probability machine. IEEE Transactions on Bio-Medical Engineering, 53(5):821–831, 2006.CrossRefGoogle Scholar
  232. 232.
    Albert M. Lai, Simon Parsons, and George Hripcsak. Fuzzy temporal constraint networks for clinical information. In AMIA Symposium, pp. 374–378, 2008.Google Scholar
  233. 233.
    Guenter Tusch, Chris Bretl, Martin O’Connor, Martin Connor, and Amar Das. SPOT–towards temporal data mining in medicine and bioinformatics. In AMIA Symposium, 2008.Google Scholar
  234. 234.
    P. Ruch and Section Editor for the IMIA Yearbook Section on Decision Support. A Medical Informatics Perspective on Decision Support. Toward a Unified Research Paradigm Combining Biological vs. Clinical, Empirical vs. Legacy, and Structured vs. Unstructured Data. In Yearbook of Medical Informatics, pp. 96–98, 2009.Google Scholar
  235. 235.
    R. A. Miller, M. A. McNeil, S. M. Challinor, F. E. Masarie, and J. D. Myers. The internist-1/quick medical reference project–status report. The Western Journal of Medicine, 145(6):816–822, 1986.Google Scholar
  236. 236.
    D. Aronsky and P. J. Haug. Diagnosing community-acquired pneumonia with a Bayesian network. In AMIA Symposium, pp. 632–636, Dept. of Medical Informatics, LDS Hospital/University of Utah, Salt Lake City, USA, 1998.Google Scholar
  237. 237.
    Kavishwar B. Wagholikar and Ashok W. Deshpande. Fuzzy relation based modeling for medical diagnostic decision support: Case studies. International Journal of Knowledge-based and Intelligent Engineering Systems, 12(5,6):319–326, 2008.Google Scholar
  238. 238.
    Kavishwar B. Wagholikar, Sundararajan Vijayraghavan, and Ashok W. Deshpande. Fuzzy naive Bayesian model for medical diagnostic decision support. In 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 1, pp. 3409–3412, 2009.Google Scholar
  239. 239.
    G. H. Guyatt, R. B. Haynes, R. Z. Jaeschke, D. J. Cook, L. Green, C. D. Naylor, M. C. Wilson, and W. S. Richardson. Users’ guides to the medical literature: Xxv. evidence-based medicine: principles for applying the users’ guides to patient care. evidence-based medicine working group. JAMA: the Journal of the American Medical Association, 284(10):1290–1296, 2000.CrossRefGoogle Scholar
  240. 240.
    J. E. Wennberg. Dealing with medical practice variations: a proposal for action. Health Affairs (Project Hope), 3(2):6–32, 1984.MathSciNetCrossRefGoogle Scholar
  241. 241.
    J. C. Horrocks, G. Devroede, and F. T. de Dombal. Computer-aided diagnosis of gastroenterologic diseases in sherbrooke: preliminary report. Canadian Journal of Surgery. Journal Canadien de Chirurgie, 19(2):160–164, 1976.Google Scholar
  242. 242.
    P. Haug, P. D. Clayton, P. Shelton, T. Rich, I. Tocino, P. R. Frederick, R. O. Crapo, W. J. Morrison, and H. R. Warner. Revision of diagnostic logic using a clinical database. Medical Decision Making: an International Journal of the Society for Medical Decision Making, 9(2):84–90, 1989.CrossRefGoogle Scholar
  243. 243.
    Eric J. Horvitz, John S. Breese, and Max Henrion. Decision theory in expert systems and artificial intelligence. Int. J. Approx. Reasoning, 2(3):247–302, 1988.CrossRefGoogle Scholar
  244. 244.
    E. H. Shortliffe, S. G. Axline, B. G. Buchanan, T. C. Merigan, and S. N. Cohen. An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comput Biomed Res, 6(6):544–560, 1973.CrossRefGoogle Scholar
  245. 245.
    David Heckerman. Probabilistic interpretations for mycin’s certainty factors. In Proceedings of the 1st Annual Conference on Uncertainty in Artificial Intelligence (UAI-85), New York, NY, 1985. Elsevier, New York.Google Scholar
  246. 246.
    Jeffrey A. Barnett. Computational methods for a mathematical theory of evidence. In IJCAI, pp. 868–875. William Kaufmann, 1981.Google Scholar
  247. 247.
    Benjamin N. Grosof. Evidential confirmation as transformed probability. In John F. Lemmer and Laveen Kanal, editors, First International Workshop on Uncertainty in Artificial Intelligence, volume 1, Amsterdam, Netherlands, 1986. North Holland (Elsevier Science), Asmterdam.Google Scholar
  248. 248.
    D. E. Heckerman and R. A. Miller. Towards a better understanding of the internist-1 knowledge base. In Medinfo86, pp. 27–31, New York, 1986. North Holland, Asmterdam.Google Scholar
  249. 249.
    Amos Tversky and Daniel Kahneman. Judgement under uncertainty: heuristics and biases. Science, 185(4157):1124–1131, 1974.CrossRefGoogle Scholar
  250. 250.
    David Heckerman. An empirical comparison of three inference methods. In Proceedings of the 4th Annual Conference on Uncertainty in Artificial Intelligence (UAI-88), New York, NY, 1988. Elsevier, New York.Google Scholar
  251. 251.
    J. L. Liu, J. C. Wyatt, J. J. Deeks, S. Clamp, J. Keen, P. Verde, C. Ohmann, J. Wellwood, M. Dawes, and D. G. Altman. Systematic reviews of clinical decision tools for acute abdominal pain. Health Technol Assess, 10(47):1–167, 2006.Google Scholar
  252. 252.
    E. S. Berner, G. D. Webster, A. A. Shugerman, J. R. Jackson, J. Algina, A. L. Baker, E. V. Ball, C. G. Cobbs, V. W. Dennis, and E. P. Frenkel. Performance of four computer-based diagnostic systems. N Engl J Med, 330(25):1792–1796, 1994.Google Scholar
  253. 253.
    D. Aronsky, K. J. Chan, and P. J. Haug. Evaluation of a computerized diagnostic decision support system for patients with pneumonia: study design considerations. Journal of the American Medical Informatics Association: JAMIA, 8(5):473–485, 2001.Google Scholar
  254. 254.
    Laura J. van ’t Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, inus A. Hart, Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T. Witteveen, George J. Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, René Bernards, and Stephen H. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871):530–536, 2002.Google Scholar
  255. 255.
    Jose Palma, Jose M. Juarez, Manuel Campos, and Roque Marin. Fuzzy theory approach for temporal model-based diagnosis: an application to medical domains. Artificial Intelligence in Medicine, 38(2):197–218, 2006.CrossRefGoogle Scholar
  256. 256.
    D. Kopecky, M. Hayde, A. R. Prusa, and K. P. Adlassnig. Knowledge-based interpretation of toxoplasmosis serology test results including fuzzy temporal concepts–the toxonet system. Medinfo, 10(Pt 1):484–488, 2001.Google Scholar
  257. 257.
    O. Bouhaddou, G. E. Morgan, J. G. Lambert, and D. Sorenson. Qualitative analysis of temporal information in iliad: implications for linking iliad to an electronic medical record as a knowledge server. In American Medical Informatics Association Symposium, pp. 199–203, 1996.Google Scholar
  258. 258.
    Carlo Combi, Elpida K. Papailiou, and Yuval Shahar. Temporal Information Systems in Medicine. Springer, New York, 2010.CrossRefGoogle Scholar
  259. 259.
    Juan C. o. Temporal reasoning for decision support in medicine. Artif. Intell. Med., 33(1):1–24, 2005.CrossRefGoogle Scholar
  260. 260.
    K. P. Adlassnig, C. Combi, A. K. Das, E. T. Keravnou, and G. Pozzi. Temporal representation and reasoning in medicine: research directions and challenges. Artif Intell Med, 38(2):101–113, 2006.CrossRefGoogle Scholar
  261. 261.
    George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall PTR, Englewood Cliffs, 1st edition, 1995.Google Scholar
  262. 262.
    T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874, 2006.MathSciNetCrossRefGoogle Scholar
  263. 263.
    David J. Hand and Robert J. Till. A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn., 45(2):171–186, 2001.CrossRefGoogle Scholar
  264. 264.
    F. T. De Dombal. The diagnosis of acute abdominal pain with computer assistance: worldwide perspective. Annales de Chirurgie, 45(4):273–277, 1991.Google Scholar
  265. 265.
    F. T. De Dombal, Susan E. Clamp, Angela Softley, Biba J. Unwin, and John R. Staniland. Prediction of individual patient prognosis: value of computer-aided systems. Med Decis Making, 6(1):18–22, 1986.CrossRefGoogle Scholar
  266. 266.
    Davide Luciani, Silvio Cavuto, Luca Antiga, Massimo Miniati, Simona Monti, Massimo Pistolesi, and Guido Bertolini. Bayes pulmonary embolism assisted diagnosis: a new expert system for clinical use. Emergency Medicine Journal: EMJ, 24(3):157–164, 2007.CrossRefGoogle Scholar
  267. 267.
    Rosa Blanco, I naki Inza, Marisa Merino, Jorge Quiroga, and Pedro Larra naga. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips. Journal of Biomedical Informatics, 38(5):376–388, 2005.Google Scholar
  268. 268.
    Sholom M. Weiss and Casimir A. Kulikowski. Expert: a system for developing consultation models. In IJCAI’79: Proceedings of the 6th international joint conference on Artificial intelligence, pp. 942–947, San Francisco, CA, USA, 1979. Morgan Kaufmann, San Francisco.Google Scholar
  269. 269.
    Tang-Kai K. Yin and Nan-Tsing T. Chiu. A computer-aided diagnosis for distinguishing tourette’s syndrome from chronic tic disorder in children by a fuzzy system with a two-step minimization approach. IEEE Transactions on Bio-Medical Engineering, 51(7):1286–1295, 2004.Google Scholar
  270. 270.
    P. H. Bartels, D. Thompson, and J. E. Weber. Diagnostic decision support by inference networks. In Vivo (Athens, Greece), 7(4):379–385, 1993.Google Scholar
  271. 271.
    C. E. Kahn, L. M. Roberts, K. Wang, D. Jenks, and P. Haddawy. Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer. In Annual Symposium on Computer Application in Medical Care, pp. 208–212, 1995.Google Scholar
  272. 272.
    R. E. Bolinger, K. J. Hopfensperger, and D. F. Preston. Application of a virtual neurode in a model thyroid diagnostic network. In Annual Symposium on Computer Application in Medical Care, pp. 310–314, 1991.Google Scholar
  273. 273.
    E. L. Kinney, R. J. Wright, and J. W. Caldwell. A classifier system for the diagnosis of disease from routine laboratory values. Journal of Medical Systems, 12(5):319–326, 1988.CrossRefGoogle Scholar
  274. 274.
    Moshe Ben-Bassat, Richard W. Carlson, Venod K. Puri, Mark D. Davenport, John A. Schriver, Mohamed Latif, Ronald Smith, Larry D. Portigal, Edward H. Lipnick, and Max H. Weil. Pattern-based interactive diagnosis of multiple disorders: The medas system. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(2):148–160, 1980.Google Scholar
  275. 275.
    K. Smith, A. Clark, K. Dyson, E. Kruger, L. Lejmanoski, A. Russell, and M. Tennant. Guided self diagnosis: an innovative approach to triage for emergency dental care. Australian Dental Journal, 51(1):11–15, 2006.CrossRefGoogle Scholar
  276. 276.
    Norman E. Betaque and G. Anthony Gorry. Automating judgmental decision making for a serious medical problem. Management Science, 17(8):B–421–434, 1971.Google Scholar
  277. 277.
    P. W. Hamilton, R. Montironi, W. Abmayr, M. Bibbo, N. Anderson, D. Thompson, and P. H. Bartels. Clinical applications of Bayesian belief networks in pathology. Pathologica, 87(3):237–245, 1995.Google Scholar
  278. 278.
    C. E. Kahn. Artificial intelligence in radiology: decision support systems. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 14(4):849–861, 1994.Google Scholar
  279. 279.
    Guillaume Marrelec, Philippe Ciuciu, Mélanie Pélégrini-Issac, and Habib Benali. Estimation of the hemodynamic response in event-related functional mri: Bayesian networks as a framework for efficient Bayesian modeling and inference. IEEE Transactions on Medical Imaging, 23(8):959–967, 2004.CrossRefGoogle Scholar
  280. 280.
    F. T. De Dombal, J. C. Horrocks, J. R. Staniland, and P. J. Guillou. Production of artificial “case histories” by using a small computer. British Medical Journal, 2(5761):578–581, 1971.CrossRefGoogle Scholar
  281. 281.
    Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karpis. Introduction to Parallel Computing: Design and Analysis of Parallel Algorithms. Benjamin-Cummings, Menlo Park, 1994.Google Scholar
  282. 282.
    Karen Sandler, Lysandra Ohrstrom, Laura Moy, and Robert McVay. Killed by code: Software transparency in implantable medical devices | opinion | communications of the ACM, 2010.Google Scholar
  283. 283.
    Michael Swash and Michael Glynn. Hutchison’s Clinical Methods: An Integrated Approach to Clinical Practice With STUDENT CONSULT Online Access. Saunders, Philadelphia, 2007.Google Scholar
  284. 284.
    D. Hunscher, A. Boyd, L. A. Green, and D. J. Clauw. Representing natural-language case report form terminology using health level 7 common document architecture, loinc, and snomed-ct: lessons learned. In AMIA Annu Symp Proc, 2006.Google Scholar
  285. 285.
    C. Friedman. A broad-coverage natural language processing system. In AMIA Annual Symposium, pp. 270–274, 2000.Google Scholar
  286. 286.
    Elizabeth S. Chen, George Hripcsak, and Carol Friedman. Disseminating natural language processed clinical narratives. In AMIA Symposium, pp. 126–130, 2006.Google Scholar
  287. 287.
    S. Goryachev, M. Sordo, and Q. T. Zeng. A suite of natural language processing tools developed for the i2b2 project. In AMIA Annu Symp Proc, 2006.Google Scholar
  288. 288.
    Olivier Bodenreider. The unified medical language system (UMLS): integrating biomedical terminology. Nucl. Acids Res., 32(suppl_1):D267–270, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kavishwar B. Wagholikar
    • 1
  • Vijayraghavan Sundararajan
    • 2
  • Ashok W. Deshpande
    • 3
  1. 1.Interdisciplinary School of Scientific Computing (ISSC)University of PunePuneIndia
  2. 2.Scientific and Engineering Computing Group (SECG)Center for Development of Advanced Computing (C-DAC)PuneIndia
  3. 3.Bioinformatics CenterUniversity of PunePuneIndia

Personalised recommendations