Journal of Medical Systems

, Volume 36, Issue 4, pp 2149–2158 | Cite as

An Image Processing Application for the Localization and Segmentation of Lymphoblast Cell Using Peripheral Blood Images

  • Hayan T. Madhloom
  • Sameem Abdul Kareem
  • Hany Ariffin


An important preliminary step in the diagnosis of leukemia is the visual examination of the patient’s peripheral blood smear under the microscope. Morphological changes in the white blood cells can be an indicator of the nature and severity of the disease. Manual techniques are labor intensive, slow, error prone and costly. A computerized system can be used as a supportive tool for the specialist in order to enhance and accelerate the morphological analysis process. This research present a new method that integrates color features with the morphological reconstruction to localize and isolate lymphoblast cells from a microscope image that contains many cells. The localization and segmentation are conducted using a proposed method that consists of an integration of several digital image processing techniques. 180 microscopic blood images were tested, and the proposed framework managed to obtain 100% accuracy for the localization of the lymphoblast cells and separate it from the image scene. The results obtained indicate that the proposed method can be safely used for the purpose of lymphoblast cells localization and segmentation and subsequently, aiding the diagnosis of leukemia.


Differential blood count Image analysis Automatic cell segmentation Leukemia diagnosis Segmentation evaluation 


  1. 1.
    Ries, L. A. G., Melbert, D., and Krapcho, M., eds., SEER Cancer Statistics Review, 1975–2005. Bethesda: National Cancer Institute, 2008.Google Scholar
  2. 2.
    Sawyers, C. L., Denny, C. T., and Witte, O. N., Leukemia and the disruption of normal hematopoeisis. Cell 64(2):337–350, 1991.CrossRefGoogle Scholar
  3. 3.
    Theerapattanakul, J., Plodpai, J., and Pintavirooj, C., An efficient method for segmentation step of automated white blood cell classifications. Proc.2004 in TENCON IEEE Region 10 Conference. 1:191–194 Vol. 1 2004.Google Scholar
  4. 4.
    Theera-Umpon, N., and Dhompongsa, S., Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification. IEEE Trans. Inf. Technol. Biomed. 11(3):353–359, 2007.CrossRefGoogle Scholar
  5. 5.
    Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Eom, S., Kim, S., Shin, V., and Ahn, B., Leukocyte segmentation in blood smear images using region-based active contours. Advanced concepts for intelligent vision systems. Springer Berlin / Heidelberg. 4179:867–876, 2006.Google Scholar
  6. 6.
    Sadeghian, F., Seman, Z., Ramli, A. R., Kahar, B. H. A., and Saripan, M., A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biol. Proced. Online 11(1):196–206, 2009.CrossRefGoogle Scholar
  7. 7.
    Liao, Q., and Deng, Y., An accurate segmentation method for white blood cell images. Proc. 2002 in IEEE International Symposium on Biomedical Imaging. 245–248, 2002.Google Scholar
  8. 8.
    Osowski, S., Markiewicz, T., Marianska, B., and Moszczyński, L., Feature generation for the cell image recognistion of myelogenous leukemia. Proc. 2004 IEEE International Conference EUSIPCO; Vienna, Austria. 753–756, 2004.Google Scholar
  9. 9.
    Scotti, F., Automatic morphological analysis for acute leukemia identification in peripheral blood microscope images. IEEE International Conference on Computational Intelligence for Measurement Systems and Applications. 96–101, 2005.Google Scholar
  10. 10.
    Piuri, V., and Scotti, F., Morphological classification of blood leucocytes by microscope images. IEEE lntemational Conference on Computationvl Intelligence far Memrement Systems and Applications. 103–108, 2004.Google Scholar
  11. 11.
    Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., and Beksac, S., An automated differential blood count system. Proc. 2001 of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3:2583–2586, 2001.Google Scholar
  12. 12.
    Ongun, G. H. U., Leblebicioglu, K., Atalay, V., Beksac, M., and Beksac, S., Feature extraction and classification of blood cells for an automated differential blood count system. Proc. 200. International Joint Conference on Neural Networks (IJCNN ’01). 4:2461–2466, 2001.Google Scholar
  13. 13.
    Madhloom, H. T., Kareem, S. A., Ariffin, H., Zaidan, A. A., Alanazi, H. O., and Zaidan, B. B., An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold. J. Applied Sci. 10:959–966, 2010.CrossRefGoogle Scholar
  14. 14.
    Theera-Umpon, N., Patch-based white blood cell nucleus segmentation using fuzzy clustering. ECTI Trans. Electrical Eng. Electr. Commun. 3:15–19, 2005.Google Scholar
  15. 15.
    Markiewicz, T., Osowski, S., Marianska, B., and Moszczyn’ski, L., Automatic recognition of the blood cells of myelogenous leukemia using SVM. IEEE International Joint Conference on Neural Networks, Montreal, Canada, 4:2496–2501, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hayan T. Madhloom
    • 1
  • Sameem Abdul Kareem
    • 1
  • Hany Ariffin
    • 2
  1. 1.Faculty of computer science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  2. 2.Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations