Journal of Medical Systems

, Volume 35, Issue 6, pp 1513–1520

# Mathematical Models of Real Geometrical Factors in Restricted Blood Vessels for the Analysis of CAD (Coronary Artery Diseases) Using Legendre, Boubaker and Bessel Polynomials

• O. B. Awojoyogbe
• O. P. Faromika
• Karem Boubaker
• O. S. Ojambati
Original Paper

## Abstract

Most cardiovascular emergencies are directly caused by coronary artery disease. Coronary arteries can become clogged or occluded, leading to damage to the heart muscle supplied by the artery. Modem cardiovascular medicine can certainly be improved by meticulous analysis of geometrical factors closely associated with the degenerative disease that results in narrowing of the coronary arteries. There are, however, inherent difficulties in developing this type of mathematical models to completely describe the real or ideal geometries that are very critical in plaque formation and thickening of the vessel wall. Neither the mathematical models of the blood vessels with arthrosclerosis generated by the heart and blood flow or the NMR/MRI data to construct them are available. In this study, a mathematical formulation for the geometrical factors that are very critical for the understanding of coronary artery disease is presented. Based on the Bloch NMR flow equations, we derive analytical expressions to describe in detail the NMR transverse magnetizations and signals as a function of some NMR flow and geometrical parameters which are invaluable for the analysis of blood flow in restricted blood vessels. The procedure would apply to the situations in which the geometry of the fatty deposits, (plague) on the interior walls of the coronary arteries is spherical. The boundary conditions are introduced based on Bessel, Boubaker and Legendre polynomials.

## Keywords

Bloch NMR flow equations Atherosclerosis Coronary artery disease Bessel polynomials Boubaker polynomials Legendre polynomials

## Notes

### Acknowledgement

The authors appreciate encouragement provided by the STEP B research programme through NUC, Nigeria and collaboration with Professor Sreenivasan, ICTP, Trieste, Italy and Professor P. Fantazzini, University of Bologna, Italy through the ICTP STEP programme.

## References

1. 1.
U.S. Department of Health and Human services, Nat. Inst. of Health, Diseases and Conditions Index, Nov. 2007.Google Scholar
2. 2.
Dada, M., Awojoyogbe, O. B., Moses, O. F., Ojambati, O. S., De, D.K. and Boubaker, K., A mathematical analysis of Stenosis Geometry, NMR magnetizations and signals based on the Bloch NMR flow equations, Bessel and Boubaker polynomial expansions. J. Biol. Phys. Chem. 9, 24DA09A, 2009. (in press).Google Scholar
3. 3.
Strong, J. P., Malcom, G. T., McMahan, C. A., et al., Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from pathobiological determinants of atherosclerosis in youth study. JAMA 281:727–735, 1999.
4. 4.
Tuzcu, E. M., Kapadia, S. R., Tutar, E., et al., High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: Evidence from intravascular ultrasound. Circulation 103:2705–2710, 2001.Google Scholar
5. 5.
Topol, E. J., and Nissen, S. E., Our preoccupation with coronary luminology.The dissociation between clinical and angiographic findings inischemic heart disease. Circulation 92:2333–2242, 1995.Google Scholar
6. 6.
Little, W. C., Constantinescu, M., and Applegate, R. J., Can coronary angiography predict the site of a subsequent infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166, 1988.
7. 7.
Falk, E., Shah, P. K., and Fuster, V., Coronary plaque disruption. Circulation 92:657–671, 1995.Google Scholar
8. 8.
Burke, A. P., Farb, A., Malcom, G. T., et al., Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282, 1997.
9. 9.
Glagov, S., Weisenberg, E., Zarins, C., et al., Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375, 1987.
10. 10.
Losordo, D. W., Rosenfield, K., and Kaufman, J., Focal compensatory enlargement of human arteries in response to progressive atherosclerosis: In vivo docum. using intravascular ultrasound. Circulation 89:2570–2577, 1994.Google Scholar
11. 11.
Mintz, G. S., Painter, J. A., Pichard, A. D., et al., Atherosclerosis in angiographically “normal” coronary artery reference segments: An intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25:1479–1485, 1995.
12. 12.
Schoenhagen, P., Ziada, K. M., Vince, D. G., Nissen, S. E., and Tuzcu, E. M., Arterial remodeling and coronary artery disease. The concept of “dilated” versus “obstructive” coronary atherosclerosis. J. Am. Coll. Cardiol. 38:297–306, 2001.
13. 13.
Smits, P. C., Pasterkamp, G., de Jaegere, P. P., de Feyter, P. J., and Borst, C., Angioscopic complex lesions are predominantly compensatory enlarged: An angioscopy and intracoronary ultrasound study. Cardiovasc. Res. 41:458–464, 1999.
14. 14.
Pasterkamp, G., Schoneveld, A. H., van der Wal, A. C., et al., Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J Am Coll Cardiol 32:655–662, 1998.
15. 15.
Nakamura, M., Nishikawa, H., Mukai, S., et al., Impact of coronary artery remodeling on clinical presentation of coronary artery disease: An intravascular ultrasound study. J Am Coll Cardiol 37:63–69, 2001.
16. 16.
Schoenhagen, P., Ziada, K., Kapadia, S. R., et al., Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: An intravascular ultrasound study. Circulation 101:598–603, 2000.Google Scholar
17. 17.
Burke, A. P., Kolodgie, F. D., Farb, A., et al., Healed plaque ruptures and sudden coronary death: Evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940, 2001.Google Scholar
18. 18.
Kim, W. Y., Danias, P. G., Stuber, M., et al., Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869, 2001.
19. 19.
Buonocore, M. H., RF Pulse design using the inverse scattering transform. Magn. Reson. Med. 29:470–477, 1993.
20. 20.
Awojoyogbe, O. B., A mathematical model of Bloch NMR equations for quantitative analysis of blood flow in blood vessels of changing cross-section II. Physica A 323:534–550, 2003.
21. 21.
Awojoyogbe, O. B., Analytical solution of the time dependent Bloch NMR equations: A translational mechanical approach. Physica A 339:437–460, 2004.
22. 22.
Awojoyogbe, O. B., A mathematical model of Bloch NMR equations for quantitative analysis of blood flow in blood vessels of changing cross-section I. Physica A 303(1–2):163–175, 2002.
23. 23.
Awojoyogbe, O. B., and Boubarker, K., A solution to Bloch NMR flow equations for the analysis of hemodynamic functions of blood flow system using m-Boubaker polynomials, Curr. Appl. Phys, (2008), doi:.
24. 24.
Awojoyogbe, O. B., A quantum mechanical model of the Bloch NMR flow equations for electron dynamics in fluids at the molecular level. Phys. Scr. 75:788–794, 2007.
25. 25.
Awojoyogbe, O.B., Faromika, O.P., Moses, O. F., Dada, M., Fuwape, I. A., Boubaker, K., Mathematical model of the Bloch NMR flow equations for the fnalysis of fluid flow in restricted geometries using Boubaker expansion scheme. Applied Physics Ms. Ref. No.: CAP-D-09-00222 June 2009 (Available Online from www.sciencedirect.com).
26. 26.
Awojoyogbe, O. B., Dada, M., Faromika, O. P., Moses, O. F., and Fuwape, I. A., Polynomial solutions of Bloch NMR flow equations for classical and quantum mechanical analysis of fluid flow in porous media. Open Magn. Reson. J. 2:46–56, 2009.Google Scholar
27. 27.
Dada, M., Awojoyogbe, O. B., Rozibaeva, N., and Mahmoud, K. B. B., Establishment of a Chebyshev-dependent inhomogeneous second order differential equation for the applied physics-related Boubaker-Turki polynomials. Appl. Appl. Math 3(2):329–336, 2008.
28. 28.
Fridjine, S., and Amlouk, M., A new parameter: An Abacus for optimizing PV-T hybrid solar device functional materials using the Boubaker polynomials expansion scheme. Mod. Phys. Lett. B 23:2179, 2009.
29. 29.
Tabatabaei, S., Zhao, T., Awojoyogbe, O., and Moses, F., Cut-off cooling velocity profiling inside a keyhole model using the Boubaker polynomials expansion scheme. Heat Mass Transf. 45:1247, 2009.
30. 30.
Belhadj, A., Onyango, O., and Rozibaeva, N., Boubaker polynomials expansion scheme-related heat transfer investigation inside keyhole model. J. Thermophys. Heat Transf. 23:639, 2009.
31. 31.
Zhao, T. G., Wang, Y. X., and Ben Mahmoud, K. B., Int. J. Math. Comp. 1:13, 2008.
32. 32.
Ghrib, T., Boubaker, K., and Bouhafs, M., Mod. Phys. Lett. B 22:2907, 2008.
33. 33.
Guezmir, N., Ben Nasrallah, T., Boubaker, K., Amlouk, M., and Belgacem, S., J. Alloys and Comp. 481:543, 2009.
34. 34.
Oyodum, O. D., Awojoyogbe, O. B., Dada, M., and Magnuson, J., Europ. Phys. J.–App. Phys. 46(2):21201, 2009.
35. 35.
Belhadj, A., Bessrour, J., Bouhafs, M., and Barrallier, L., Experimental and theoretical cooling velocity profile inside laser welded metals using keyhole approximation and Boubaker polynomials expansion. J. Therm. Anal. Calorim 97(3):911–915, 2009.

## Authors and Affiliations

• O. B. Awojoyogbe
• 1
• O. P. Faromika
• 3