Journal of Medical Systems

, Volume 35, Issue 4, pp 473–481 | Cite as

Detecting Sleep Apnea by Heart Rate Variability Analysis: Assessing the Validity of Databases and Algorithms

  • María J. Lado
  • Xosé A. Vila
  • Leandro Rodríguez-Liñares
  • Arturo J. Méndez
  • David N. Olivieri
  • Paulo Félix
Original Paper


Obstructive sleep apnea (OSA) is a serious disorder caused by intermittent airway obstruction which may have dangerous impact on daily living activities. Heart rate variability (HRV) analysis could be used for diagnosing OSA, since this disease affects HRV during sleep. In order to validate different algorithms developed for detecting OSA employing HRV analysis, several public or proprietary data collections have been employed for different research groups. However, for validation purposes, it is obvious and evident the lack of a common standard database, worldwide recognized and accepted by the scientific community. In this paper, different algorithms employing HRV analysis were applied over diverse public and proprietary databases for detecting OSA, and the outcomes were validated in terms of a statistical analysis. Results indicate that the use of a specific database may strongly affect the performance of the algorithms, due to differences in methodologies of processing. Our results suggest that researchers must strongly take into consideration the database used when quoting their results, since selected cases are highly database dependent and would bias conclusions.


OSA Heart rate variability ECG Biomedical signal processing 



The authors would like to thank Dr. Carlos Zamarrón for his help with the data acquisition for the CHUS data set. This work has been partially supported by the Consellería de Industria, Xunta de Galicia, under the grant PGIDIT06SIN30501PR and by the Spanish Ministry under the grant: TIN-2006-15460-C04-02.


  1. 1.
    Young, T., Peppard, P. E., and Gottlieb, D. J., Epidemiology of obstructive sleep apnea. A population health perspective. Am. J. Respir. Crit. Care Med. 165:1217–1219, 2002.CrossRefGoogle Scholar
  2. 2.
    Strohl, K., and Redline, S., Recognition of obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 154:274–289, 1996.Google Scholar
  3. 3.
    Hossen, A., Ghunaimi, B. A., and Hassan, M. O., Subband decomposition soft-decision algorithm for heart rate variability analysis in patients with obstructive sleep apnea and normal controls. Signal. Proc. 83:95–106, 2005.CrossRefGoogle Scholar
  4. 4.
    Roche, F., Pichot, V., Sforza, E., Court-Fortune, I., Costes, F., Garet, M., and Barthélémy, J. C., Predicting sleep apnea syndrome from heart period: a time-frequency wavelet analysis. Eur. Respir. J. 22:937–942, 2003.CrossRefGoogle Scholar
  5. 5.
    Günes, S., Polat, K., and Yosunkaya, S., Multi-class f-score feature selection approach to classification of obstructive sleep apnea syndrome. Expert Syst. Appl. (in press), 2009.Google Scholar
  6. 6.
    Bigger, J. T., Fleiss, J. L., Steinman, R. C., Rolnitzky, L. M., Kleiger, R. E., and Rottman, J. N., Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 85:164–171, 1992.Google Scholar
  7. 7.
    Vinik, A. I., and Ziegler, D., Diabetic cardiovascular autonomic neuropathy. Circulation. 115:387–397, 2007.CrossRefGoogle Scholar
  8. 8.
    Narkiewicz, K., Montano, N., Cogliati, C., van de Borne, P. J. H., Dyken, M. E., and Somers, V. K., Altered cardiovascular variability in obstructive sleep apnea. Circulation. 98:1071–1077, 1998.Google Scholar
  9. 9.
    Gula, L. J., Krahn, A. D., Skanes, A., Ferguson, K. A., George, C., Yee, R., and Klein, G. J., Heart rate variability in obstructive sleep apnea: a prospective study and frequency domain analysis. ANE. 8:144–149, 2003.Google Scholar
  10. 10.
    Penzel, T., Kantelhardt, J. W., Grote, L., Peter, J. H., and Bunde, A., Comparison of detrended fluctuations and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 50:1143–1151, 2003.CrossRefGoogle Scholar
  11. 11.
    Drinnan, M. J., Allen, J., Langley, P., and Murray, A., Detection of sleep apnoea from frequency analysis of heart rate variability. Comput. Cardiol. 27:263–269, 2000.Google Scholar
  12. 12.
    Otero, A., Dapena, S. F., Félix, P., Presedo, J., and Tarascó, M., A screening test for obstructive sleep apnea that can be performed at the patient’s home. WISP2009-6th IEEE Int. Symp. Intell. Signal. Proc. 199–204, 2009.Google Scholar
  13. 13.
    Nishikawa, R. M., Giger, M. L., Doi, K., Metz, C. E., Yin, F., Viborny, C. J., and Schmidt, R. A., Effect of case selection on the performance of computer-aided detection schemes. Med. Phys. 21:265–269, 1994.CrossRefGoogle Scholar
  14. 14.
    Vila, J., Barro, S., Presedo, J., Ruiz, R., and Palácios, F., Analysis of heart rate variability with evenly spaced time values. Proc. 14th Annual Int. Conf. IEEE EMBS. 575–576, 1992.Google Scholar
  15. 15.
    Shinar, Z., Baharav, A., and Akselrod, S., Obstructive sleep apnea detection based on electrocardiogram analysis. Comput. Cardiol. 27:757–760, 2000.Google Scholar
  16. 16.
    Schrader, M., Zywietz, C., von Einem, V., Widiger, B., and Joseph, G., Detection of sleep apnea in single channel ECGs from the PhysioNet data base. Comput. Cardiol. 27:259–262, 2000.Google Scholar
  17. 17.
    Mendez, M. O., Ruini, D. D., Villantieri, O. P., Matteucci, M., Penzel, T., Cerutti, S., and Bianchi, A. M., Detection of sleep apnea from surface ECG based on features extracted by an autoregressive model. Proc. IEEE EMBS. 6105–6108, 2007.Google Scholar
  18. 18.
    Al-Angari, H. M., and Sahakian, A. V., Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 54:1900–1904, 2007.CrossRefGoogle Scholar
  19. 19.
    Ichimaru, Y., and Moody, G. B., Development of the polysomnographic database on CD-ROM. Psych. Clin. Neurosci. 53:175–177, 1999.CrossRefGoogle Scholar
  20. 20.
    Vila, X. A., Lado, M. J., Méndez, A. J., Olivieri, D. N., and Rodríguez-Liñares, L., An R package for heart rate variability analysis. WISP2009-6th IEEE Int. Symp. Intell. Signal. Proc. 217–222, 2009.Google Scholar
  21. 21.
    Vila, J., Palacios, F., Presedo, J., Fernández-Delgado, M., Félix, P., and Barro, S., Time-frequency analysis of heart-rate variability. IEEE Eng. Med. Biol. Mag. 16:119–125, 1997.CrossRefGoogle Scholar
  22. 22.
    Grafen, A., and Hails, R., Modern statistics for the life sciences. Oxford University Press: New York, 2002.Google Scholar
  23. 23.
    Park, D. H., Shin, C. J., Hong, S. C., Yu, J., Ryu, S. H., Kim, E. J., Shin, H. B., and Shin, B. H., Correlation between the severity of obstructive sleep apnea and heart rate variability indices. J. Korean Med. Sci. 23:226–231, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • María J. Lado
    • 1
  • Xosé A. Vila
    • 1
  • Leandro Rodríguez-Liñares
    • 1
  • Arturo J. Méndez
    • 1
  • David N. Olivieri
    • 1
  • Paulo Félix
    • 2
  1. 1.Department of Computer Science, ESEIUniversity of VigoOurenseSpain
  2. 2.Department of Electronics and Computer ScienceUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations