Journal of Medical Systems

, Volume 34, Issue 6, pp 1011–1021 | Cite as

Implementation of a Multi-functional Ambulatory Urodynamics Monitoring System Based on Newly Devised Abdominal Pressure Measurement

  • Keo Sik Kim
  • Jeong Hwan Seo
  • Jin U. Kang
  • Chul Gyu Song
Original Paper


The measurement of the rectal pressure is considered to be the ‘gold standard’ for the assessment of the abdominal pressure. However, conventional rectal catheters can cause erroneous results and are not comfortable for the patients. To reduce these problems, we devised a non-invasive technique for the measurement of the abdominal pressure using the parametric curve fitting method, based on linear, polynomial, exponential or sine equation modeling, between the rectal pressure and electromyographic (sEMG) signals recorded simultaneously from the abdomen. The sEMG signals and rectal pressure were obtained simultaneously from 12 patients with neurogenic bladders due to spinal cord injury (age = 53.2 ± 11.9 years, BMI = 24.4 ± 2.7, ASIA classification: D). Using our algorithm, the correlation coefficient and root mean square error (RMSE) between the measured and estimated abdominal pressure obtained by the quartic polynomial modeling were 0.86 ± 0.05 and 4.70 ± 1.56, respectively. The results obtained herein suggest that the sEMG signals can be used reliably for the indirect measurement of the abdominal pressure in ambulatory urodynamics monitoring systems.


Abdominal pressure Natural filling cystometry Surface electromyography Parametric curve fitting 



This work was supported by the second stage of the Brain Korea 21 Project in 2009 and a Korean Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST; no. R01-2008-000-20089-0).


  1. 1.
    Schafer, W., Abrams, P., Liao, L., Mattiasson, A., Pesce, F., Spangberg, A., Sterling, A. M., Zinner, N. R., and Van Kerrebroeck, P., Good urodynamic practices: Uroflowmetry, filling cystometry and pressure-flow studies. Neurourol. Urodyn. 21:261–274, 2002. doi: 10.1002/nau.10066.CrossRefGoogle Scholar
  2. 2.
    Webb, R. J., Ramsden, P. D., and Neal, D. E., Ambulatory monitoring and electronics measurement of urinary leakage in the diagnosis of detrusor instability and incontinence. Br. J. Urol. 68:148–152, 1991. doi: 10.1111/j.1464-410X.1991.tb15283.x.CrossRefGoogle Scholar
  3. 3.
    Radley, S. C., Rosario, D. J., Chapple, C. R., and Farkas, A. G., Conventional and ambulatory urodynamic findings in women with symptoms suggestive of bladder overactivity. J. Urol. 166:2253–2258, 2001. doi: 10.1016/S0022-5347(05)65545-0.CrossRefGoogle Scholar
  4. 4.
    Rosario, D. J., Macdiarmid, S. A., Radley, S. C., and Chapple, C. R., A comparison of ambulatory and conventional urodynamic studies in men with borderline outlet obstruction. BJU Int. 83:400–409, 1999. doi: 10.1046/j.1464-410x.1999.00927.x.CrossRefGoogle Scholar
  5. 5.
    Sunjay, J., Timothy, J., and Derek, T., Ambulatory urodynamic monitoring has a useful role in men with an equivocal or failed conventional study. Eur. Urol. Suppl. 1:51, 2002.Google Scholar
  6. 6.
    Malbrain, M. L. N. G., Different technique to measure intra-abdominal pressure (IAP). Intensive Care Med. 30:357–371, 2004. doi: 10.1007/s00134-003-2107-2.CrossRefGoogle Scholar
  7. 7.
    Van Doorn, E. W., Anders, K., Khullar, V., Kulsenh-Hanssen, S., Pesce, F., Robertson, A., Rosario, D., and Schafer, W., Standardisation of ambulatory urodynamic monitoring: Report of the standardisation sub-committee of the international continence society for ambulatory urodynamic studies. Neurourol. Urodyn. 19:113–125, 2000. doi: 10.1002/(SICI)1520-6777(2000)19:2<113::AID-NAU2>3.0.CO;2-#.CrossRefGoogle Scholar
  8. 8.
    Ridings, P. C., Bloomfield, G. L., and Blocher, C. R., Cardiopulmonary effects of raised intra-abdominal pressure before and after intravascular volume expansion. J. Trauma. 39:1071–1075, 1995. doi: 10.1097/00005373-199512000-00010.CrossRefGoogle Scholar
  9. 9.
    Thompson, J. A., O’Sullivan, P. B., Briffa, N. K., and Neumann, P., Altered muscle activation patterns in symptomatic women during pelvic floor muscle contraction and Valsalva manoeuvre. Neurourol. Urodyn. 25:268–276, 2006. doi: 10.1002/nau.20183.CrossRefGoogle Scholar
  10. 10.
    McBeth, P. B., Zygun, D. A., Widder, S., Cheatham, M., Zengerink, I., Glowa, J., and Kirkpatrick, A. W., Effect of patient positioning on intra-abdominal pressure monitoring. Am. J. Surg. 193:644–647, 2007. doi: 10.1016/j.amjsurg.2007.01.013.CrossRefGoogle Scholar
  11. 11.
    MacDonald, A., Paterson, P. J., Baxter, J. N., and Finlay, I. G., Relationship between intra-abdominal pressure and intra-rectal pressure in the proctometrogram. Br. J. Surg. 80:1070–1071, 1993. doi: 10.1002/bjs.1800800852.CrossRefGoogle Scholar
  12. 12.
    Neumann, P., and Gill, V., Pelvic floor and abdominal muscle interaction: EMG activity and intra-abdominal pressure. Int. Urogynecol. J. 13:125–132, 2002. doi: 10.1007/s001920200027.CrossRefGoogle Scholar
  13. 13.
    Demaria, F., Porcher, R., Ismael, S. S., Amarenco, G., Fritel, X., Madelenat, P., and Benifla, J. L., Using intercostals muscle EMG to quantify maternal expulsive efforts during vaginal delivery: A pilot study. Neurourol. Urodyn. 23:675–678, 2004. doi: 10.1002/nau.20050.CrossRefGoogle Scholar
  14. 14.
    Amarenco, G., Ismael, S. S., Lagauche, D., Raibaut, P., Rene-Corail, P., Wolff, N., Thoumie, P., and Haab, F., Couch anal reflex: Strict relationship between intravesical pressure and pelvic floor muscle electromyography activity during cough. Urol. 173:149–152, 2005.CrossRefGoogle Scholar
  15. 15.
    Hsu, K., Novara, C., Vincent, T., Milanese, M., and Poolla, K., Parametric and nonparametric curve fitting. Automatica. 42:1869–1873, 2006. doi: 10.1016/j.automatica.2006.05.024.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rangayyan, R. M., Biomedical signal analysis. Wiley, New York, 2002.Google Scholar
  17. 17.
    American Spinal Injury Association, Reference manual for the international standards for neurological classification of spinal cord injury. American Spinal Injury Association, Chicago, IL, 2003.Google Scholar
  18. 18.
    Abrams, P., Cardozo, L., Fall, M., Griffiths, D., Rosier, P., Ulmsten, U., Van Kerrbroeck, P., Victor, A., and Wein, A., The standardisation of terminology of lower urinary tract function: Report from the standardisation sub-committee of the international continence society. Neurourol. Urodyn. 21:167–178, 2002. doi: 10.1002/nau.10052.CrossRefGoogle Scholar
  19. 19.
    Sullivan, J., Lewis, P., Williams, T., Shepherd, A. M., and Abrams, P., Quality control in urodynamics. BJU Int. 91:201–207, 2003. doi: 10.1046/j.1464-410X.2003.04054.x.CrossRefGoogle Scholar
  20. 20.
    Nordander, C., Willner, J., Hansson, G. A., Larsson, B., Unge, J., Granquist, L., and Skerfving, S., Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and BMI, on the EMG amplitude. Eur. J. Appl. Physiol. 89:514–519, 2003. doi: 10.1007/s00421-003-0819-1.CrossRefGoogle Scholar
  21. 21.
    Wyndaele, J. J., and Wachter, S. D., Cystometry sensory data from a normal population: Comparison of two groups of young healthy volunteers examined with 5 years interval. Eur. Urol. 42:34–38, 2002. doi: 10.1016/S0302-2838(02)00221-X.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Keo Sik Kim
    • 1
  • Jeong Hwan Seo
    • 2
  • Jin U. Kang
    • 3
  • Chul Gyu Song
    • 1
  1. 1.School of Electronics and Information Engineering, College of EngineeringChonbuk National UniversityJeonjuSouth Korea
  2. 2.School of MedicineDepartment of Physical Medicine & RehabilitationJeonjuKorea
  3. 3.Department of Electrical and Computer EngineeringJohns Hopkins UniversityMD 21218-2685USA

Personalised recommendations