Journal of Medical Systems

, Volume 34, Issue 4, pp 701–707 | Cite as

Benefits of Pharmacogenomics in Drug Development—Earlier Launch of Drugs and Less Adverse Events

Original Paper


Currently, pharmaceutical companies are reluctant to introduce pharmacogenomics (PGx) in their practice, since cost–benefit of PGx is obscure and methodology to use PGx in drug development has not been fully established yet. The purpose of this study is to investigate advantages obtained by introducing PGx in clinical trials. Particularly, taking Warfarin as an example, we investigate benefits of Enrichment effect that raises response rate of the drug by PGx. When response rate is raised by only 5%, cost of a clinical trial can be reduced to about 40% of a conventional clinical trial. Furthermore, since period necessary for a trial also can be reduced, development period can be shortened by about 750 days. In summary, PGx enables earlier launch of a drug with less cost, representing benefit to pharmaceutical companies, patients and public as a whole.


Clinical trials Pharmacogenomics SNPs Personalized medicines Cost-effective Warfarin 


  1. 1.
    Evans, W. E., and Mcleod, H. L., Pharmacogenomics—Drug disposition, drug targets and side effects. N. Engl. J. Med. 348:538–549, 2003. doi: 10.1056/NEJMra020526.CrossRefGoogle Scholar
  2. 2.
    Weinshilboum, R., Inheritance and drug response. N. Engl. J. Med. 348:529–537, 2003. doi: 10.1056/NEJMra020021.CrossRefGoogle Scholar
  3. 3.
    Ernst, F. R., and Grizzle, A. J., Drug related morbidity and mortality: updating the cost-of-illness model. J. Am. Pharm. Assoc. 41:192–199, 2001.Google Scholar
  4. 4.
    Desta, Z., Zhao, X., Shin, J. G., et al., Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41:913–958, 2002. doi: 10.2165/00003088-200241120-00002.CrossRefGoogle Scholar
  5. 5.
    Mushiroda, T., Ohnishi, Y., Saito, S., et al., Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients. J. Hum. Genet. 51:249–253, 2006. doi: 10.1007/s10038-005-0354-5.CrossRefGoogle Scholar
  6. 6.
    Viroj, W., Pharmacogenetic effect of cytochrome P450 2C9 polymorphisms in different populations. Clin. Appl. Thromb. Hemost. 12 (2)219–222, 2006. doi: 10.1177/107602960601200211.CrossRefGoogle Scholar
  7. 7.
    Cardon, L. R., Idury, R. M., Harris, T. J., et al., Testing drug response in the presence of genetic information: sampling issues for clinical trials. Pharmacogenemics. 10:503–510, 2000. doi: 10.1097/00008571-200008000-00003.CrossRefGoogle Scholar
  8. 8.
    Fung, M., Thornton, A., Mybeck, K., et al., Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets—1960 to 1999. Drug Inf. J. 35:293–317, 2001.Google Scholar
  9. 9.
    Huges, S., Huges, A., Brothers, C., et al., PREDICT-1(CNA106030). The first powered, prospective trial of pharmacogenetic screening to reduce drug adverse events. Pharm. Stat. 7:121–129, 2008. doi: 10.1002/pst.286.CrossRefGoogle Scholar
  10. 10.
    Sai, K., Sawada, J., Minami, H., et al., Irinotecan pharmacogenetics in Japanese cancer patients: Roles of UGTA1*6 and 28. Yakugaku. Zasshi. 128 (4)575–584, 2008. doi: 10.1248/yakushi.128.575.CrossRefGoogle Scholar
  11. 11.
    Garrison, L. P. Jr., Lubeck, D., Lalla, D., et al., Cost-effectiveness analysis of traszumab in the adjuvant setting for treatment of Her2-positive breast cancer. Cancer. 110:489–498, 2007. doi: 10.1002/cncr.22806.CrossRefGoogle Scholar
  12. 12.
    Brian, F., and Lawrence, J., Pharmacogenetics of warfarin; regulatory, scientific, and clinical issues. J. Thromb. Thrombolysis. 25:45–51, 2008. doi: 10.1007/s11239-007-0104-y.CrossRefGoogle Scholar
  13. 13.
    DeMets, D. L., Clinical trials in the new millennium. Stat. Med. 21:2779–2787, 2002. doi: 10.1002/sim.1281.CrossRefGoogle Scholar
  14. 14.
    McWilliam, A., Lutter, R., Nardinelli, C. et al., Health Care Savings from personalizing Medicine Using Genetic testing. AEI Bookings Joint Center for Regulatory Studies, Working Paper 6-23, 2006.Google Scholar
  15. 15.
    Ministry of Education, Culture, Sports, Science and Technology, Leading Project. Biobank Japan. 2005.
  16. 16.
    Veenstra, D. L., Higashi, M. K., and Phillips, K. A., Assessing the cost-effectiveness of pharmacogenomics. AAPS. PharmSci. 29 (3)1–11, 2000.Google Scholar
  17. 17.
    Japan Pharmaceutical Manufacturers Association, Questionnaire about pharmacogenomics., 2007
  18. 18.
    Hurlen, M., Abdelnoor, M., Smith, P., et al., Warfarin, aspirin, or both after myocardial infarction. N. Engl. J. Med. 347 (13)969–974, 2002. doi: 10.1056/NEJMoa020496.CrossRefGoogle Scholar
  19. 19.
    Gallen, C., Clinical research and development. Wyeth Pharmaceuticals, Collegeville, p. 19426, 2006.Google Scholar
  20. 20.
    Japan Pharmaceutical Manufacturers Association, Proposal for extension of patent period, February, 2009
  21. 21.
    Shah, R. R., Regulatory aspects of pharmacogenetics and pharmacogenomics. Bundesgesundheitsblatt. Gesundheitsforschung. Gesundheitsschutz. 46:855–867, 2003. doi: 10.1007/s00103-003-0697-z.CrossRefGoogle Scholar
  22. 22.
    Yatsuda Y., Sales rank of world medicines, Utobain News release, Jul 2007. /news-release/2007/070700/NewsRelease0707.pdf
  23. 23.
    The calculation is based on the data in “Commission to facilitate marketing of effective and safe medicine”, MHLW, October 30, 2006.
  24. 24.
    Saito, H., Current Status and Issues of Drug Development Strategy in Japan. Drug Deliv. Syst. 1, 65–72, 2002.Google Scholar
  25. 25.
    Genelex. Pharmacogenetics: personalizing medicine today. In Health and DNA. Seattle, Washington U.S. 2007.
  26. 26.
    Ernst, F. R., and Grizzle, A. J., Drug-related morbidity and mortality: updating the cost-of-illness model. J. Am. Pharm. Assoc. 41:192–199, 2001.Google Scholar
  27. 27.
    Bureau of Labor Statistics, Consumer price index for medical care, 2002–2006.Google Scholar
  28. 28.
    Rieder, M. J., Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352 (22)2285–2293, 2005. doi: 10.1056/NEJMoa044503.CrossRefGoogle Scholar
  29. 29.
    Genetic Information Nondiscrimination Act:GINA.
  30. 30.
    SNP Genotyping and Analysis Markets. Kalorama Information, 2008.
  31. 31.
    Cabinet Office, Government of Japan, Act on the Protection of Personal Information, May, 2003,
  32. 32.
    Ministry of Health, Labour and Welfare, Ethical Guidelines for Human Genome and Genetic Sequencing Research, December, 2004,

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Information Center for Medical ScienceTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations