Extremal Rearrangement Problems Involving Poisson’s Equation with Robin Boundary Conditions


In this paper, we study both minimization and maximization problems corresponding to a Poisson’s equation with Robin boundary conditions. These rearrangement shape optimization problems arise in many applications including the design of mechanical vibration and fluid mechanics that explore the possibility to control the total displacement and the kinetic energy, respectively. Analytically, we study the properties of the extremizers on general domains including topology and geometry of the optimizers. Asymptotic behaviors of the optimal values are investigated as well. Although the explicit solutions are rare for this kind of optimization problems, we obtain such solutions on N-balls. Numerically, we propose efficient algorithms based on finite element methods, rearrangement techniques and our analytical results to determine the extremizers in just a few iterations on general domains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Availability of data and material

Not applicable.

Code availability

A demo code is provided in the supplementary material.


  1. 1.

    Anedda, C., Cuccu, F., Porru, G.: Minimization of the first eigenvalue in problems involving the bi-Laplacian. Rev. Matemática Teor. Apl. 16(1), 127–136 (2009)

    Google Scholar 

  2. 2.

    Antunes, P.R., Mohammadi, S.A., Voss, H.: A nonlinear eigenvalue optimization problem: optimal potential functions. Nonlinear Anal. Real World Appl. 40, 307–327 (2018)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bahrami, F., Emamizadeh, B., Mohammadi, A.: Existence of an extremal ground state energy of a nanostructured quantum dot. Nonlinear Anal. Theory Methods Appl. 74(17), 6287–6294 (2011)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Bahrami, F., Nycander, J.: Existence of energy minimizing vortices attached to a flat-top seamount. Nonlinear Anal. Real World Appl. 8(1), 288–294 (2007)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Banks, D.O.: Bounds for the eigenvalues of nonhomogeneous hinged vibrating rods. J. Math. Mech. 16, 949–966 (1967)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Beesack, P.R.: Isoperimetric inequalities for the nonhomogeneous clamped rod and plate. J. Math. Mech. 8, 471–482 (1959)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Bras. Mat. Bull. Braz. Math. Soc. 22(1), 1–37 (1991)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  9. 9.

    Brock, F.: Rearrangements and applications to symmetry problems in PDE. In: Chipot, M. (ed.) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, pp. 1–60. Elsevier (2007)

  10. 10.

    Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. Acta Univ. Carol. Math. Phys. 28(2), 13–24 (1987)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Burton, G.: Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann. 276(2), 225–253 (1987)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Burton, G.: Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. linst. Henri Poincare C Non Linear Anal. 6, 295–319 (1989)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Burton, G., McLeod, J.: Maximisation and minimisation on classes of rearrangements. Proc. R. Soc. Edinb. Sect. A Math. 119(3–4), 287–300 (1991)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Cadeddu, L., Farina, M.A., Porru, G.: Optimization of the principal eigenvalue under mixed boundary conditions. Electron. J. Differ. Equ. 2014(154), 1–17 (2014)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Chanillo, S., Grieser, D., Imai, M., Kurata, K., Ohnishi, I.: Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214(2), 315–337 (2000). https://doi.org/10.1007/PL00005534

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Chanillo, S., Grieser, D., Imai, M., Kurata, K., Ohnishi, I.: Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214(2), 315–337 (2000)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Chen, W., Chou, C.S., Kao, C.Y.: Minimizing eigenvalues for inhomogeneous rods and plates. J. Sci. Comput. 69(3), 983–1013 (2016)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Chen, W., Diest, K., Kao, C.Y., Marthaler, D.E., Sweatlock, L.A., Osher, S.: Gradient based optimization methods for metamaterial design. In: Diest, K. (ed.) Numerical Methods for Metamaterial Design, pp. 175–204. Springer (2013)

  19. 19.

    Chugunova, M., Jadamba, B., Kao, C.Y., Klymko, C., Thomas, E., Zhao, B.: Study of a mixed dispersal population dynamics model. In: Brenner, S.C. (ed.) Topics in Numerical Partial Differential Equations and Scientific Computing, pp. 51–77. Springer (2016)

  20. 20.

    Conca, C., Laurain, A., Mahadevan, R.: Minimization of the ground state for two phase conductors in low contrast regime. SIAM J. Appl. Math. 72(4), 1238–1259 (2012)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Conca, C., Mahadevan, R., Sanz, L.: An extremal eigenvalue problem for a two-phase conductor in a ball. Appl. Math. Optim. 60(2), 173–184 (2009)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Cox, S., Lipton, R.: Extremal eigenvalue problems for two-phase conductors. Arch. Ration. Mech. Anal. 136(2), 101–117 (1996)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Cox, S.J.: The two phase drum with the deepest bass note. Jpn. J. Ind. Appl. Math. 8(3), 345–355 (1991). https://doi.org/10.1007/BF03167141

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Cox, S.J., Dobson, D.C.: Band structure optimization of two-dimensional photonic crystals in h-polarization. J. Comput. Phys. 158(2), 214–224 (2000)

    MATH  Google Scholar 

  25. 25.

    Cuccu, F., Emamizadeh, B., Porru, G.: Optimization of the first eigenvalue in problems involving the bi-Laplacian. Proc. Am. Math. Soc. 137(5), 1677–1687 (2009)

    MATH  Google Scholar 

  26. 26.

    Cuccu, F., Porru, G.: Maximization of the first eigenvalue in problems involving the bi-Laplacian. Nonlinear Anal. Theory Methods Appl. 71(12), e800–e809 (2009)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Daners, D.: Robin boundary value problems on arbitrary domains. Trans. Am. Math. Soc. 352(9), 4207–4236 (2000)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Dobson, D.C., Cox, S.J.: Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math. 59(6), 2108–2120 (1999)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    Google Scholar 

  30. 30.

    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. springer, Berlin (2015)

    Google Scholar 

  31. 31.

    He, L., Kao, C.Y., Osher, S.: Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225(1), 891–909 (2007)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Springer, Berlin (2006)

    Google Scholar 

  33. 33.

    Hintermüller, M., Kao, C.Y., Laurain, A.: Principal eigenvalue minimization for an elliptic problem with indefinite weight and robin boundary conditions. Appl. Math. Optim. 65(1), 111–146 (2012)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Kang, D., Kao, C.Y.: Minimization of inhomogeneous biharmonic eigenvalue problems. Appl. Math. Model. 51, 587–604 (2017)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Kao, C.Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Math. Biosci. Eng. 5(2), 315–335 (2008)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Kao, C.Y., Osher, S., Yablonovitch, E.: Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B Lasers Opt. 81(2), 235–244 (2005)

    Google Scholar 

  37. 37.

    Kao, C.Y., Santosa, F.: Maximization of the quality factor of an optical resonator. Wave Motion 45(4), 412–427 (2008)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Kao, C.Y., Su, S.: Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54(2–3), 492–512 (2013)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Karabash, I.M.: Nonlinear eigenvalue problem for optimal resonances in optical cavities. Math. Model. Natural Phenom. 8(01), 143–155 (2013)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Krein, M.G.: On Certain Problems on the Maximum and Minimum of Characteristic Values and on the Lyapunov Zones of Stability. American Mathematical Society translations. American Mathematical Society (1955). http://books.google.com/books?id=ya_NYgEACAAJ

  41. 41.

    Lamboley, J., Laurain, A., Nadin, G., Privat, Y.: Properties of optimizers of the principal eigenvalue with indefinite weight and robin conditions. Calc. Var. Partial Differ. Equ. 55(6), 144 (2016)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Lê, A.: Eigenvalue problems for the p-Laplacian. Nonlinear Anal. Theory Methods Appl. 64(5), 1057–1099 (2006)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Lin, J., Santosa, F.: Resonances of a finite one-dimensional photonic crystal with a defect. SIAM J. Appl. Math. 73(2), 1002–1019 (2013)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Liu, Y., Emamizadeh, B.: Converse symmetry and intermediate energy values in rearrangement optimization problems. SIAM J. Control Optim. 55(3), 2088–2107 (2017)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Lou, Y., Yanagida, E.: Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23(3), 275–292 (2006)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Maksimović, M., Hammer, M., van Groesen, E.B.: Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes. Optical Engineering 47(11), 114601–114601 (2008)

    Google Scholar 

  47. 47.

    Masters, A.: Rearrangements and vortices. Ph.D. thesis, University of Bath (2014)

  48. 48.

    Men, H., Lee, K.Y., Freund, R.M., Peraire, J., Johnson, S.G.: Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Opt. Express 22(19), 22632–22648 (2014)

    Google Scholar 

  49. 49.

    Men, H., Nguyen, N.C., Freund, R.M., Lim, K.M., Parrilo, P.A., Peraire, J.: Design of photonic crystals with multiple and combined band gaps. Phys. Rev. E 83(4), 046703 (2011)

    Google Scholar 

  50. 50.

    Meng, F., Jia, B., Huang, X.: Topology-optimized 3d photonic structures with maximal omnidirectional bandgaps. Adv. Theory Simul. 1(12), 1800122 (2018)

    Google Scholar 

  51. 51.

    Mohammadi, A., Bahrami, F.: A nonlinear eigenvalue problem arising in a nanostructured quantum dot. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3053–3062 (2014)

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Mohammadi, A., Bahrami, F., Mohammadpour, H.: Shape dependent energy optimization in quantum dots. Appl. Math. Lett. 25(9), 1240–1244 (2012)

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Mohammadi, S., Bahrami, F.: Extremal principal eigenvalue of the bi-Laplacian operator. Appl. Math. Model. 40(3), 2291–2300 (2016)

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Mohammadi, S.A.: Extremal energies of Laplacian operator: Different configurations for steady vortices. J. Math. Anal. Appl. 448(1), 140–155 (2017)

    MathSciNet  MATH  Google Scholar 

  55. 55.

    Mohammadi, S.A., Bozorgnia, F., Voss, H.: Optimal shape design for the p-Laplacian eigenvalue problem. J. Sci. Comput. 78(2), 1231–1249 (2019)

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Mohammadi, S.A., Voss, H.: A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter. Nonlinear Anal. Real World Appl. 31, 119–131 (2016)

    MathSciNet  MATH  Google Scholar 

  57. 57.

    Osher, S.J., Santosa, F.: Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171(1), 272–288 (2001)

    MathSciNet  MATH  Google Scholar 

  58. 58.

    Osting, B.: Bragg structure and the first spectral gap. Appl. Math. Lett. 25(11), 1926–1930 (2012)

    MathSciNet  MATH  Google Scholar 

  59. 59.

    Schaftingen, J.: Universal approximation of symmetrizations by polarizations. Proc. Am. Math. Soc. 134(1), 177–186 (2006)

    MathSciNet  MATH  Google Scholar 

  60. 60.

    Schwarz, B.: Some results on the frequencies of nonhomogeneous rods. J. Math. Anal. Appl. 5(2), 169–175 (1962)

    MathSciNet  MATH  Google Scholar 

  61. 61.

    Sigmund, O., Hougaard, K.: Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 100(15), 153904 (2008)

    Google Scholar 

  62. 62.

    Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis, vol. 16. Springer, Berlin (2012)

    Google Scholar 

  63. 63.

    Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley, Hoboken (2007)

    Google Scholar 

  64. 64.

    Van Schaftingen, J., Willem, M.: Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. 10(2), 439–456 (2008)

    MathSciNet  MATH  Google Scholar 

  65. 65.

    Van Schaftingen, J., et al.: Approximation of symmetrizations and symmetry of critical points. Topol. Methods Nonlinear Anal. 28(1), 61–85 (2006)

    MathSciNet  MATH  Google Scholar 

Download references


Authors would like to thank Mathematics division, National Center of Theoretical Sciences, Taipei, Taiwan for hosting a research pair program during June 15-June 30, 2019 to support this study.


Chiu-Yen Kao is partially supported by NSF grant DMS-1818948.

Author information



Corresponding author

Correspondence to Chiu-Yen Kao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by NSF Grant DMS-1818948.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (m 10 KB)

Supplementary material 2 (m 18 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kao, CY., Mohammadi, S.A. Extremal Rearrangement Problems Involving Poisson’s Equation with Robin Boundary Conditions. J Sci Comput 86, 40 (2021). https://doi.org/10.1007/s10915-021-01413-2

Download citation


  • Poisson’s equation
  • Shape optimization
  • Rearrangement
  • Mechanical vibration
  • Robin boundary conditions

Mathematics Subject Classification

  • 35Q93
  • 49J20
  • 49M99
  • 35J20
  • 74E30