Accelerating the Convergence of the Moment Method for the Boltzmann Equation Using Filters

Abstract

The moment method is a successful way to approximate the solution of the Boltzmann equation in reasonable runtime with relatively few unknowns while allowing for non-equilibrium effects of the gas. However, the convergence of the moment method with respect to an increasing number of moments is typically slow. This paper aims to improve the convergence of the moment method by introducing filtered hyperbolic moment equations that result in virtually no additional computational overhead while significantly reducing the error. The filter approach is based on a careful study of averaging solutions of two adjacent moment systems and the reformulation of the averaging using an artificial collision method that naturally gives rise to the filter. We study the properties of the filter and show numerical test cases of one-dimensional problems that demonstrate the superior quality of the new filtered moment method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Abdelmalik, M.R.A., van Brummelen, E.H.: Error estimation and adaptive moment hierarchies for goal-oriented approximations of the Boltzmann equation. Comput. Methods Appl. Mech. Eng 325, 219–239 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Aoki, K., Degond, P., Takata, S., Yoshida, H.: Diffusion models for Knudsen compressors. Phys. Fluids 19(11), 103–117 (2007)

    MATH  Article  Google Scholar 

  3. 3.

    Au, J.D., Torrilhon, M., Weiss, W.: The shock tube experiment in extended thermodynamics. Phys. Fluids 13(8), 2423–2432 (2001)

    MATH  Article  Google Scholar 

  4. 4.

    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    MATH  Article  Google Scholar 

  5. 5.

    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  6. 6.

    Bouffanais, R.: Design and Control of Swarm Dynamics. Springer, Berlin (2016)

    Google Scholar 

  7. 7.

    Cai, Z., Fan, Y., Li, R.: Hyperbolic model reduction for kinetic equations. arXiv:2001.10370 (2020)

  8. 8.

    Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system in one dimensional space. Commun. Math. Sci. 11(2), 547–571 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Cai, Z., Fan, Y., Li, R.: On hyperbolicity of 13-moment system. Kinet. Relat. Models 7(3), 415–432 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Cai, Z., Fan, Y., Li, R.: A framework on moment model reduction for kinetic equation. SIAM J. Appl. Math. 75(5), 2001–2023 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Cai, Z., Fan, Y., Li, R., Qiao, Z.: Dimension-reduced hyperbolic moment method for the Boltzmann equation with BGK-type collision. Commun. Comput. Phys. 15(5), 1368–1406 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Cai, Z., Li, R., Qiao, Z.: NRxx simulation of microflows with Shakhov model. SIAM J. Sci. Comput. 34(1), A339–A369 (2012)

    MATH  Article  Google Scholar 

  14. 14.

    Cai, Z., Li, R., Qiao, Z.: Globally hyperbolic regularized moment method with applications to microflow simulation. Comput. Fluids 81, 95–109 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Cai, Z., Li, R., Wang, Y.: Numerical regularized moment method for high mach number flow. Commun. Comput. Phys. 11(5), 1415–1438 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  17. 17.

    Di, Y., Fan, Y., Kou, Z., Li, R., Wang, Y.: Filtered hyperbolic moment method for the vlasov equation. J. Sci. Comput. 79, 969–991 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Di, Y., Fan, Y., Li, R.: 13-moment system with global hyperbolicity for quantum gas. J. Stat. Phys. 167(5), 1280–1302 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Fan, Y., Koellermeier, J., Li, J., Li, R., Torrilhon, M.: Model reduction of kinetic equations by operator projection. J. Stat. Phys. 162(2), 457–486 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Fan, Y., Li, R.: Globally hyperbolic moment system by generalized Hermite expansion. Sci. Sinica Math. 45(10), 1635–1676 (2015)

    Article  Google Scholar 

  21. 21.

    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Gu, X.J., Emerson, D.R.: A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177–216 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Hou, T., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Hu, Z., Li, R., Lu, T., Wang, Y., Yao, W.: Simulation of an \(n^{+}\text{- }n\text{- }n^{+}\) diode by using globally-hyperbolically-closed high-order moment models. J. Sci. Comput. 59(3), 761–774 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Kanevsky, A., Carpenter, K., Hesthaven, J.S.: Idempotent filtering in spectral and spectral element methods. J. Comput. Phys. 220(1), 41–58 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Kataoka, T., Tsutahara, M., Ogawa, K., Yamamoto, Y., Shoji, M., Sakai, Y.: Knudsen pump and its possibility of application to satellite control. Theor. Appl. Mech. Jpn. 53, 155–161 (2004)

    Google Scholar 

  27. 27.

    Koellermeier, J.: Derivation and numerical solution of hyperbolic moment equations for rarefied gas flows. Dissertation, RWTH Aachen University, Aachen, (2017)

  28. 28.

    Koellermeier, J.: Error estimators for adaptive simulation of rarefied gases using hyperbolic moment models. AIP Conf. Proc. 2132(1), 120004 (2019)

    Article  Google Scholar 

  29. 29.

    Koellermeier, J., Schaerer, R.P., Torrilhon, M.: A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinet. Relat. Models 7(3), 531–549 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Koellermeier, J., Torrilhon, M.: Hyperbolic moment equations using quadrature-based projection methods. AIP Conf. Proc. 1628(1), 626–633 (2014)

    MATH  Article  Google Scholar 

  31. 31.

    Koellermeier, J., Torrilhon, M.: Numerical solution of hyperbolic moment models for the Boltzmann equation. Eur. J. Mech. B/Fluids 64, 41–46 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Koellermeier, J., Torrilhon, M.: Numerical study of partially conservative moment equations in kinetic theory. Commun. Comput. Phys. 21(4), 981–1011 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Koellermeier, J., Torrilhon, M.: Two-dimensional simulation of rarefied gas flows using quadrature-based moment equations. Multiscale Model. Simul. 16(2), 1059–1084 (2018)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Lai, R.: On the one and one-half dimensional relativistic Vlasov–Maxwell–Fokker–Planck system with non-vanishing viscosity. Math Methods Appl. Sci. 21, 1287–1296 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5), 1021–1065 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    McClarren, R.G., Hauck, C.D.: Simulating radiative transfer with filtered spherical harmonics. Phys. Lett. A 374(22), 2290–2296 (2010)

    MATH  Article  Google Scholar 

  38. 38.

    McDonald, J., Torrilhon, M.: Affordable robust moment closures for CFD based on the maximum-entropy hierarchy. J. Comput. Phys. 251, 500–523 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10(08), 1121–1149 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Ruggeri, T.: Breakdown of shock-wave-structure solutions. Phys. Rev. E 47, 4135–4140 (1993)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Schaerer, R.P., Torrilhon, M.: On singular closures for the 5-moment system in kinetic gas theory. Commun. Comput. Phys. 17(2), 371–400 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Shakhov, E.M.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3(5), 95–96 (1968)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics. Springer, Berlin (2006)

    Google Scholar 

  44. 44.

    Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Struchtrup, H., Torrilhon, M.: Higher-order effects in rarefied channel flows. Phys. Rev. E 78, 046301 (2008)

    MathSciNet  Article  Google Scholar 

  46. 46.

    Torrilhon, M.: Slow gas microflow past a sphere: analytical solution based on moment equations. Phys. Fluids 22(7), 072001 (2010)

    MATH  Article  Google Scholar 

  47. 47.

    Torrilhon, M.: Convergence study of moment approximations for boundary value problems of the Boltzmann-BGK equation. Commun. Comput. Phys. 18(3), 529–557 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Torrilhon, M.: Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48(1), 429–458 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Torrilhon, M., Sarna, N.: Hierarchical Boltzmann simulations and model error estimation. J. Comput. Phys. 342, 66–84 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Uehling, E.A., Uhlenbeck, G.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. i. Phys. Rev. 43(7), 552 (1933)

    MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their constructive and helpful comments. The research of J. Koellermeier was funded by a joint postdoctoral scholarship from Freie Universität Berlin and Peking University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julian Koellermeier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The datasets generated during or analysed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Koellermeier, J. Accelerating the Convergence of the Moment Method for the Boltzmann Equation Using Filters. J Sci Comput 84, 1 (2020). https://doi.org/10.1007/s10915-020-01251-8

Download citation

Keywords

  • Filtering
  • Boltzmann equation
  • Hyperbolic moment equations
  • Artificial collision
  • Filtered hyperbolic moment equations