Nanofluid Heat Transfer in Wavy-Wall Channels with Different Geometries: A Finite-Volume Lattice Boltzmann Study

Abstract

In this work, we perform an extensive numerical investigation of the heat transfer behavior of nanofluid laminar flows, in wavy-wall channels. The adopted computational approach is based on a finite-volume formulation of the lattice Boltzmann method constructed on a fully-unstructured mesh. We show the validity and effectiveness of this numerical approach to deal with realistic problems involving nanofluid flows, and we employ it to analyze the effects of the wavy-wall channel geometry on the rate of heat transfer, thus providing useful information to the design of efficient heat transfer devices. Results show that an increasing of the wavy surface amplitude has a positive effect on the heat transfer rate, while a phase shift between the wavy walls leads to a decreasing of the mean Nusselt number along the channel. The addition of solid nanoparticles within a base liquid significantly contributes to increase the rate of heat transfer, especially when a relatively high value of nanoparticles volume fraction is employed. The present analysis then suggests that the use of nanofluids within an axis-symmetric configuration of the wavy-wall channel, with high wavy surface amplitude, may represent an optimal solution to enhance the thermal performances of heat transfer devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Xuan, Y., Li, Q.: Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21(1), 58–64 (2000). https://doi.org/10.1016/S0142-727X(99)00067-3

    Article  Google Scholar 

  2. 2.

    Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME 66, 99–105 (1995)

    Google Scholar 

  3. 3.

    Ilhan, B., Erturk, H.: Experimental characterization of laminar forced convection of hBN-water nanofluid in circular pipe. Int. J. Heat Mass Transf. 111, 500 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.040

    Article  Google Scholar 

  4. 4.

    Godson, L., Raja, B., Lal, D., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14(2), 629 (2010). https://doi.org/10.1016/j.rser.2009.10.004

    Article  Google Scholar 

  5. 5.

    Ambreen, T., Kim, M.: Comparative assessment of numerical models for nanofluids’ laminar forced convection in micro and mini channels. Int. J. Heat Mass Transf. 115, 513 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.046

    Article  Google Scholar 

  6. 6.

    Oztop, H.F., Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5), 1326 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009

    Article  Google Scholar 

  7. 7.

    Huminic, G., Huminic, A.: Application of nanofluids in heat exchangers: a review. Renew. Sustain. Energy Rev. 16(8), 5625 (2012). https://doi.org/10.1016/j.rser.2012.05.023

    Article  MATH  Google Scholar 

  8. 8.

    Aneke, M., Wang, M.: Energy storage technologies and real life applications—a state of the art review. Appl. Energy 179, 350 (2016). https://doi.org/10.1016/j.apenergy.2016.06.097

    Article  Google Scholar 

  9. 9.

    Pielichowska, K., Pielichowski, K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 65, 67 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.005

    Article  Google Scholar 

  10. 10.

    Mendecka, B., Cozzolino, R., Leveni, M., Bella, G.: Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage. Energy 176, 816 (2019). https://doi.org/10.1016/j.energy.2019.04.024

    Article  Google Scholar 

  11. 11.

    Li, W., Qu, Z., He, Y., Tao, W.: Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin. Appl. Therm. Eng. 37, 1 (2012). https://doi.org/10.1016/j.applthermaleng.2011.11.001

    Article  Google Scholar 

  12. 12.

    Xiao, X., Zhang, P., Li, M.: Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int. J. Therm. Sci. 81, 94 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.03.006

    Article  Google Scholar 

  13. 13.

    Chen, Z., Gao, D., Shi, J.: Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int. J. Heat Mass Transf. 72, 646 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.003

    Article  Google Scholar 

  14. 14.

    Zhang, Z., Cheng, J., He, X.: Numerical simulation of flow and heat transfer in composite PCM on the basis of two different models of open-cell metal foam skeletons. Int. J. Heat Mass Transf. 112, 959 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.012

    Article  Google Scholar 

  15. 15.

    Barbieri, M., Di Ilio, G., Patanè, F., Bella, G.: Experimental investigation on buoyancy-induced convection in aluminum metal foams. Int. J. Refrig. 76, 385 (2017). https://doi.org/10.1016/j.ijrefrig.2016.12.019

  16. 16.

    Guarino, S., Di Ilio, G., Venettacci, S.: Influence of thermal contact resistance of aluminum foams in forced convection: experimental analysis. Materials 10, 907 (2017). https://doi.org/10.3390/ma10080907

    Article  Google Scholar 

  17. 17.

    Rufuss, D., Suganthi, L., Iniyan, S., Davies, P.: Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J. Clean. Prod. 192, 9 (2018). https://doi.org/10.1016/j.jclepro.2018.04.201

    Article  Google Scholar 

  18. 18.

    Liu, L., Su, D., Tang, Y., Fang, G.: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Sustain. Energy Rev. 62, 305 (2016). https://doi.org/10.1016/j.rser.2010.08.007

    Article  Google Scholar 

  19. 19.

    Akbari, M., Galanis, N., Behzadmehr, A.: Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection. Int. J. Heat Fluid Flow 37, 136 (2012). https://doi.org/10.1016/j.ijheatfluidflow.2012.05.005

    Article  Google Scholar 

  20. 20.

    Liang, G., Mudawar, I.: Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int. J. Heat Mass Transf. 136, 324 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086

    Article  Google Scholar 

  21. 21.

    Akbarinia, A., Behzadmehr, A.: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes. Appl. Therm. Eng. 27, 1327 (2007). https://doi.org/10.1016/j.applthermaleng.2006.10.034

    Article  Google Scholar 

  22. 22.

    Maiga, S., Palm, S., Nguyen, C., Roy, G., Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow 26, 530 (2005). https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004

    Article  Google Scholar 

  23. 23.

    Behzadmehr, A., Saffar-Avval, M., Galanis, N.: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach. Int. J. Heat Fluid Flow 28(2), 211 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006

    Article  Google Scholar 

  24. 24.

    Sidik, N., Yazid, M., Samion, S., Musa, M., Mamat, R.: Latest development on computational approaches for nanofluid flow modeling: Navier–Stokes based multiphase models. Int. Commun. Heat Mass Transf. 74, 114 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.03.007

    Article  Google Scholar 

  25. 25.

    Brinkman, H.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571 (1952). https://doi.org/10.1063/1.1700493

    Article  Google Scholar 

  26. 26.

    Maxwell, J.: A Treatise on Electricity and Magnetism, vol. 1. Clarendon Press, Oxford (1873)

    Google Scholar 

  27. 27.

    Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)

    Google Scholar 

  28. 28.

    Chen, S., Doolen, G.D.: Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329 (1998). https://doi.org/10.1146/annurev.fluid.30.1.329

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145 (1992). https://doi.org/10.1016/0370-1573(92)90090-M

    Article  Google Scholar 

  30. 30.

    McNamara, G., Zanetti, G.: Use of the Boltzmann equation to simulate lattice gas automata. Phys. Rev. Lett. 61, 2332 (1988). https://doi.org/10.1103/PhysRevLett.61.2332

    Article  Google Scholar 

  31. 31.

    Qian, Y.: Simulating thermohydrodynamics with lattice BGK models. J. Sci. Comput. 8(3), 231 (1993). https://doi.org/10.1007/BF01060932

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Succi, S., Bella, G., Papetti, F.: Lattice kinetic theory for numerical combustion. J. Sci. Comput. 12(4), 395 (1997). https://doi.org/10.1023/A:1025676913034

    Article  MATH  Google Scholar 

  33. 33.

    Succi, S., d’Humieres, D., Qian, Y., Orszag, S.: On the small-scale dynamical behavior of lattice BGK and lattice Boltzmann schemes. J. Sci. Comput. 8(3), 219 (1993). https://doi.org/10.1007/BF01060931

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Zarghami, A., Falcucci, G., Jannelli, E., Succi, S., Porfiri, M., Ubertini, S.: Lattice Boltzmann modeling of water entry problems. Int. J. Mod. Phys. C 25, 1441012 (2014). https://doi.org/10.1142/S0129183114410125

    Article  Google Scholar 

  35. 35.

    Chiappini, D., Di Ilio, G.: Water impact on obstacles using KBC-free surface lattice Boltzmann method . In: AIP Conference Proceedings, vol. 1978, p. 420002. AIP Publishing (2018). https://doi.org/10.1063/1.5044005

  36. 36.

    Dorschner, B., Chikatamarla, S., Karlin, I.: Transitional flows with the entropic lattice Boltzmann method. J. Fluid Mech. 824, 388 (2017). https://doi.org/10.1017/jfm.2017.356

    MathSciNet  Article  Google Scholar 

  37. 37.

    Di Ilio, G., Dorschner, B., Bella, G., Succi, S., Karlin, I.: Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes. J. Fluid Mech. 849, 35 (2018). https://doi.org/10.1017/jfm.2018.413

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Jacob, J., Malaspinas, O., Sagaut, P.: Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes. J. Turbul. 19(11–12), 1051 (2018). https://doi.org/10.1080/14685248.2018.1540879

    MathSciNet  Article  Google Scholar 

  39. 39.

    Montessori, A., Prestinizi, P., La Rocca, M., Falcucci, G., Succi, S., Kaxiras, E.: Effects of Knudsen diffusivity on the effective reactivity of nanoporous catalyst media. J. Comput. Sci. 17, 377 (2016). https://doi.org/10.1016/j.jocs.2016.04.006

    Article  Google Scholar 

  40. 40.

    Bösch, F., Dorschner, B., Karlin, I.: Entropic multi-relaxation free-energy lattice Boltzmann model for two-phase flows. EPL (Europhys. Lett.) 122(1), 14002 (2018). https://doi.org/10.1209/0295-5075/122/14002

    Article  Google Scholar 

  41. 41.

    Falcucci, G., Bella, G., Chiatti, G., Chibbaro, S., Sbragaglia, M., Succi, S.: Commun. Comput. Phys. 2(6), 1071 (2007)

  42. 42.

    Falcucci, G., Ubertini, S., Chiappini, D., Succi, S.: Modern lattice Boltzmann methods for multiphase microflows. IMA J. Appl. Math. 76(5), 712 (2011). https://doi.org/10.1093/imamat/hxr014

    MathSciNet  Article  Google Scholar 

  43. 43.

    Xuan, Y., Li, Q., Yao, Z.: Application of lattice Boltzmann scheme to nanofluids. Sci. China Ser. E: Technol. Sci. 47(2), 129 (2004). https://doi.org/10.1360/03ye0163

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Xuan, Y., Yao, Z.: Lattice Boltzmann model for nanofluids. Heat Mass Transf. 41(3), 199 (2005). https://doi.org/10.1007/s00231-004-0539-z

    Article  Google Scholar 

  45. 45.

    Sheikholeslami, M., Ashorynejad, H., Rana, P.: Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J. Mol. Liq. 214, 86 (2016). https://doi.org/10.1016/j.molliq.2015.11.052

    Article  Google Scholar 

  46. 46.

    Ashorynejad, H., Zarghami, A.: Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel. Int. J. Heat Mass Transf. 119, 247 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.117

    Article  Google Scholar 

  47. 47.

    Ashorynejad, H., Zarghami, A., Sadeghi, K.: Analyzing thermo-hydrodynamics of nanofluid flowing through a wavy U-turn channel. Int. J. Mech. Sci. 144, 628 (2018). https://doi.org/10.1016/j.ijmecsci.2018.06.025

    Article  Google Scholar 

  48. 48.

    Sidik, N., Mamat, R.: Recent progress on lattice Boltzmann simulation of nanofluids: a review. Int. Commun. Heat Mass Transf. 66, 11 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.05.010

    Article  Google Scholar 

  49. 49.

    So, R., Fu, S., Leung, K.: Finite difference lattice Boltzmann method for compressible thermal fluids. AIAA J. 48(6), 1059 (2010). https://doi.org/10.2514/1.43257

    Article  Google Scholar 

  50. 50.

    Patel, S., Lee, T.: A new splitting scheme to the discrete Boltzmann equation for non-ideal gases on non-uniform meshes. J. Comput. Phys. 327, 799 (2016). https://doi.org/10.1016/j.jcp.2016.09.060

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Ubertini, S., Bella, G., Succi, S.: Lattice Boltzmann method on unstructured grids: further developments. Phys. Rev. E 68, 016701 (2003). https://doi.org/10.1103/PhysRevE.68.016701

    MathSciNet  Article  Google Scholar 

  52. 52.

    Ubertini, S., Succi, S., Bella, G.: Lattice Boltzmann schemes without coordinates. Philos. Trans. R. Soc. Lond. A 362, 1763 (2004). https://doi.org/10.1098/rsta.2004.1413

    MathSciNet  Article  MATH  Google Scholar 

  53. 53.

    Zarghami, A., Ubertini, S., Succi, S.: Finite volume formulation of thermal lattice Boltzmann method. Int. J. Numer. Methods Heat Fluid Flow 24(2), 270 (2014). https://doi.org/10.1108/HFF-11-2011-0234

  54. 54.

    Zarghami, A., Biscarini, C., Succi, S., Ubertini, S.: Hydrodynamics in porous media: a finite volume lattice Boltzmann study. J. Sci. Comput. 59(1), 80 (2014). https://doi.org/10.1007/s10915-013-9754-4

    MathSciNet  Article  MATH  Google Scholar 

  55. 55.

    Krämer, A., Küllmer, K., Reith, D., Joppich, W., Foysi, H.: Semi-lagrangian off-lattice Boltzmann method for weakly compressible flows. Phys. Rev. E 95(2), 023305 (2017). https://doi.org/10.1103/PhysRevE.95.023305

    MathSciNet  Article  Google Scholar 

  56. 56.

    Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G., Succi, S.: Hybrid Lattice Boltzmann method on overlapping grids. Phys. Rev. E 95, 013309 (2017). https://doi.org/10.1103/PhysRevE.95.013309

    Article  Google Scholar 

  57. 57.

    Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G., Succi, S.: Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid lattice Boltzmann method. Comput. Fluids 166, 200 (2018). https://doi.org/10.1016/j.compfluid.2018.02.014

    MathSciNet  Article  MATH  Google Scholar 

  58. 58.

    Di Ilio, G., Chiappini, D., Ubertini, S., Bella, G., Succi, S.: A moving-grid approach for fluid-structure interaction problems with hybrid lattice Boltzmann method. Comput. Phys. Commun. 234, 137 (2019). https://doi.org/10.1016/j.cpc.2018.07.017

    Article  Google Scholar 

  59. 59.

    Zarghami, A., Ubertini, S., Succi, S.: Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. Comput. Fluids 77, 56 (2013). https://doi.org/10.1016/j.compfluid.2013.02.018

    MathSciNet  Article  MATH  Google Scholar 

  60. 60.

    Ghasemi, J.,  Razavi, S.: J. Appl. Fluid Mech. 6(4), 519 (2013). https://doi.org/10.36884/jafm.6.04.21207

  61. 61.

    Guo, Z., Zheng, C., Shi, B., Zhao, T.: Thermal lattice Boltzmann equation for low Mach number flows: decoupling model. Phys. Rev. E 75, 036704 (2007). https://doi.org/10.1103/PhysRevE.75.036704

    Article  Google Scholar 

  62. 62.

    Wang, C., Chen, C.: Thermal lattice Boltzmann equation for low Mach number flows: decoupling model. Int. J. Heat Mass Transf. 45, 2587 (2002). https://doi.org/10.1016/S0017-9310(01)00335-0

    Article  Google Scholar 

  63. 63.

    Ahmed, M., Yusoff, M., Ng, K., Shuaib, N.: The effects of wavy-wall phase shift on thermal-Hydraulic performance of \({\rm Al}_{2}{\rm O}_{3}\)-water nanofluid flow in sinusoidal-wavy channel. Case Stud. Therm. Eng. 4, 153 (2014). https://doi.org/10.1016/j.csite.2014.09.005

    Article  Google Scholar 

  64. 64.

    Cengel, Y., Ghajar, A.: Heat and Mass Transfer: Fundamentals and Applications. Mc Graw Hill, New York (2015)

    Google Scholar 

  65. 65.

    Heris, S., Etemad, S., Esfahany, M.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transf. 33, 529 (2006). https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005

    Article  Google Scholar 

  66. 66.

    Heris, S., Esfahany, M.N., Etemad, S.G.: Experimental investigation of convective heat transfer of \({\rm Al}_{2}{\rm O}_{3}\)/water nanofluid in circular tube. Int. J. Heat Fluid Flow 28, 203 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001

    Article  Google Scholar 

Download references

Acknowledgements

G.F. wishes to acknowledge the financial support of Project CUP: E86C18000400005 —“Mission Sustainability” provided by the University of Rome “Tor Vergata”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Di Ilio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Ilio, G., Ubertini, S., Succi, S. et al. Nanofluid Heat Transfer in Wavy-Wall Channels with Different Geometries: A Finite-Volume Lattice Boltzmann Study. J Sci Comput 83, 56 (2020). https://doi.org/10.1007/s10915-020-01234-9

Download citation

Keywords

  • Nanofluids
  • Wavy-wall channel
  • Unstructured lattice Boltzmann method