Sixth-Order Accurate Schemes for Reinitialization and Extrapolation in the Level Set Framework

Abstract

The level set method is a common approach for handling moving boundary problems, which allows a moving, irregular surface to be described implicitly on a Cartesian grid. This approach often requires reinitialization of the level set function and extrapolation of fields defined only on the interface. Because many applications in physics and engineering involve calculation of second derivatives of the interface curvature and fourth order derivatives of surface fields, accurate simulations of these problems require high-order methods for reinitialization and extrapolation. Here we build off WENO schemes for Hamilton–Jacobi equations to develop novel sixth-order accurate methods for reinitialization and extrapolation. We present numerical results in three dimensional spaces demonstrating fourth-order accuracy of the interfacial curvature and sixth-order accuracy for the extrapolated surface fields. We then show that the extrapolation scheme can be integrated into the closest point method for surface PDEs and present an example of computing geodesic curves on surfaces.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Adalsteinsson, D., Sethian, J.A.: Transport and diffusion of material quantities on propagating interfaces via level set methods. J. Comput. Phys. 185(1), 271–288 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Bardi, M., Osher, S.: The nonconvex multidimensional Riemann problem for Hamilton–Jacobi equations. SIAM J. Math. Anal. 22(2), 344–351 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Cheng, L.-T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level-set approach. J. Comput. Phys. 175(2), 604–644 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Chopp, D., Sethian, J.A.: Motion by intrinsic Laplacian of curvature. Interfaces Free Bound. 1(1), 107–123 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Coquerelle, M., Glockner, S.: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. J. Comput. Phys. 305, 838–876 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 152 (2013)

    Article  Google Scholar 

  7. 7.

    du Chéné, A., Min, C., Gibou, F.: Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes. J. Sci. Comput. 35(2–3), 114–131 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)

    Google Scholar 

  9. 9.

    Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Greer, J.B., Bertozzi, A.L., Sapiro, G.: Fourth order partial differential equations on general geometries. J. Comput. Phys. 216(1), 216–246 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Guckenberger, A., Schraml, M.P., Chen, P.G., Leonetti, M., Gekle, S.: On the bending algorithms for soft objects in flows. Comput. Phys. Commun. 207, 1–23 (2016)

    MATH  Article  Google Scholar 

  12. 12.

    Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12), 693–703 (1973)

    Article  Google Scholar 

  14. 14.

    Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Laadhari, A., Saramito, P., Misbah, C., Székely, G.: Fully implicit methodology for the dynamics of biomembranes and capillary interfaces by combining the level set and Newton methods. J. Comput. Phys. 343, 271–299 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Lipnikov, K., Morgan, N.: A high-order discontinuous Galerkin method for level set problems on polygonal meshes. J. Comput. Phys. 397, 108834 (2019)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liu, X.-D., Osher, S., Chan, T., et al.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Macdonald, C.B., Ruuth, S.J.: Level set equations on surfaces via the closest point method. J. Sci. Comput. 35(2–3), 219–240 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Min, C.: On reinitializing level set functions. J. Comput. Phys. 229(8), 2764–2772 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Russo, G., Smereka, P.: A remark on computing distance functions. J. Comput. Phys. 163(1), 51–67 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Salac, D., Miksis, M.: A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Sezgin, E., Levental, I., Mayor, S., Eggeling, C.: The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Cell Biol. 18(1), 361–374 (2017)

    Article  Google Scholar 

  26. 26.

    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Smit, J., van Sint Annaland, M., Kuipers, J.A.M.: Grid adaptation with weno schemes for non-uniform grids to solve convection-dominated partial differential equations. Chem. Eng. Sci. 60(10), 2609–2619 (2005)

    Article  Google Scholar 

  28. 28.

    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    MATH  Article  Google Scholar 

  29. 29.

    The Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/

  30. 30.

    Towers, J.D.: Two methods for discretizing a delta function supported on a level set. J. Comput. Phys. 220(2), 915–931 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Xu, J.-J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19(1–3), 573–594 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Zhao, H.-K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Zhong-can, O.-Y., Helfrich, W.: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39, 5280–5288 (1989)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles W. Wolgemuth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by National Institute of Health (NIH) Grant U54CA210172.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wolgemuth, C.W. Sixth-Order Accurate Schemes for Reinitialization and Extrapolation in the Level Set Framework. J Sci Comput 83, 26 (2020). https://doi.org/10.1007/s10915-020-01210-3

Download citation

Keywords

  • Level set method
  • Fourth-order accurate curvature
  • Reinitializaion equation

Mathematics Subject Classification

  • 35F21
  • 65M06