Skip to main content
Log in

Extension of Tensor-Product Generalized and Dense-Norm Summation-by-Parts Operators to Curvilinear Coordinates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Methodologies are presented that enable the construction of provably linearly stable and conservative high-order discretizations of partial differential equations in curvilinear coordinates based on generalized summation-by-parts operators, including operators with dense-norm matrices. Specifically, three approaches are presented for the construction of stable and conservative schemes in curvilinear coordinates using summation-by-parts (SBP) operators that have a diagonal norm but may or may not include boundary nodes: (1) the mortar-element approach, (2) the global SBP-operator approach, and (3) the staggered-grid approach. Moreover, the staggered-grid approach is extended to enable the development of stable dense-norm operators in curvilinear coordinates. In addition, collocated upwind simultaneous approximation terms for the weak imposition of boundary conditions or inter-element coupling are extended to curvilinear coordinates with the new approaches. While the emphasis in the paper is on tensor-product SBP operators, the approaches that are covered are directly applicable to multidimensional SBP operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boom, P.D., Zingg, D.W.: High-order implicit time-marching methods based on generalized summation-by-parts operators. SIAM J. Sci. Comput. 6(37), A2682–A2709 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carpenter, M.H., Del Rey Fernández, D.C.: On entropy stable dicretizations using generalized summation-by-parts operators on curvilinear coordiantes. NASA Technical Report (2018)

  3. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Parsani, M., Svärd, M., Yamaleev, N.: Entropy stable summation-by-parts formulations for computational fluid dynamics. Handb. Numer. Anal. 17, 495–524 (2016)

    MathSciNet  Google Scholar 

  5. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carpenter, M.H., Nordström, J., Gottlieb, D.: Revisiting and extending interface penalties for multi-domain summation-by-parts operators. J. Sci. Comput. 45(1–3), 118–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carpenter, M.H., Parsani, M., Fisher, T.C., Nielsen, E.J.: Towards an entropy stable spectral element framework for computational fluid dynamics. In: 54th AIAA Aerospace Sciences Meeting, AIAA 2016-1058. American Institute of Aeronautics and Astronautics (AIAA) (2016)

  9. Chan, J.: Weight-adjusted discontinuous Galerkin methods: matrix-valued weights and elastic wave propagation in heterogeneous media. Int. J. Numer. Meth. Eng. 113(12), 1779–1809 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, J., Del Rey Fernández, D.C., Carpenter, M.H.: Efficient entropy stable Gauss collocation methods. Submitted to SIAM J. Sci. Comput. (2018)

  12. Chan, J., Hewett, R.J., Warburton, T.: Weight-adjusted discontinuous Galerkin methods: wave propogation in hetrogeneous media. SIAM J. Sci. Comput. 39(6), A2935–A2961 (2017)

    Article  MATH  Google Scholar 

  13. Chan, J., Hewett, R.J., Warburton, T.: Weight-adjusted discontinuous Galerkin methods: curvilinear meshes (2018). arXiv:1608.03836v1 [math.NA]

  14. Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng, Y., Chou, C.S., Li, F., Xing, Y.: L2 stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86, 121–155 (2017)

    Article  MATH  Google Scholar 

  16. Crean, J., Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Del Rey Fernández, D.C., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266(1), 214–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Del Rey Fernández, D.C., Carpenter, M.H., Friedrich, L., Winters, A.R., Gassner, G.J., Dalcin, L., Parsani, M.: Entropy stable non-conforming discretizations with the summation-by-parts property for curvilinear coordinates. NASA Technical Report (2018)

  19. Del Rey Fernández, D.C., Crean, J., Carpenter, M.H., Hicken, J.E.: Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates. J. Comput. Phys. 392, 161–186 (2019)

    Article  MathSciNet  Google Scholar 

  20. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95(22), 171–196 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Simultaneous approximation terms for multidimensional summation-by-parts operators. J. Sci. Comput. 1(75), 83–110 (2018)

    Article  MATH  Google Scholar 

  22. Deng, X., Mao, M., Tu, G., Liu, H., Zhang, H.: Geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 230(4), 1100–1115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deng, X., Min, Y., Mao, M., Liu, H., Tu, G., Zhang, H.: Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 239, 90–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Derigs, D., Winters, A.R., Gassner, J.G., Walch, S.: A novel averaging technique for discrete entropy-stable dissipation operators for ideal mhd. J. Comput. Phys. 330(1), 624–632 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fisher, T.C.: High-order \(l^{2}\) stable multi-domain finite difference method for compressible flows. Ph.D. thesis, Purdue University (2012)

  26. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252(1), 518–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234(1), 353–375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Friedrich, L., Del Rey Fernández, D.C., Winters, A.R., Gassner, G.J., Zingg, D.W., Hicken, J.E.: Conservative and stable degree preserving SBP operators for non-conforming meshes. J. Sci. Comput. 75(2), 657–686 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Friedrich, L., Winters, A.R., Del Rey Fernández, D.C., Gassner, G.J., Parsani, M., Carpenter, M.H.: An entropy stable \(h/p\) non-conforming discontinuous Galerkin method with the summation-by-parts property. J. Sci. Comput. 77, 1–37 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272(2), 291–308 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Multidimensional summation-by-part operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hicken, J.E., Zingg, D.W.: Aerodynamic optimization algorithm with integrated geometry parameterization and mesh movement. AIAA J. 48(2), 400–413 (2010)

    Article  Google Scholar 

  35. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  Google Scholar 

  36. Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier–Stokes equations. J. Comput. Phys. 148(2), 621–645 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nordström, J., Carpenter, M.H.: High-order finite-difference methods, multidimensional linear problems, and curvilinear coordinates. J. Comput. Phys. 173(1), 149–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osusky, L.M.: A numerical methodology for aerodynamic shape optimization in turbulent flow enabling large geometric variation. Ph.D. thesis, University of Toronto (2014)

  39. Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations. SIAM J. Sci. Comput. 38(5), A3129–A3162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for the three-dimensional compressible Navier–Stokes equations. J. Comput. Phys. 292(1), 88–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer.l Math. 128, 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311(15), 299–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying jacobians. J. Comput. Phys. 342(C), 13–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shi, C., Shu, C.W.: On local conservation of numerical methods for conservation laws. Comput. Fluids 169(4), 3–9 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Svärd, M.: On coordinate transformations for summation-by-parts operators. J. Sci. Comput. 20(1), 29–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value-problems. J. Comput. Phys. 268(1), 17–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Thomas, D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vinokur, M., Yee, H.C.: Extension of efficient low dissipation high order schemes for \(3\)-D curvilinear moving grids. In: Caughey, D.A., Hafez, M. (eds.) Frontiers of Computational Fluid Dynamics, pp. 129–164. World Scientific Publishing Company, Singapore (2002)

    MATH  Google Scholar 

  49. Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340(1), 200–242 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Winters, A.R., Derigs, D., Gassner, G.J., Walch, S.: Uniquely defined entropy stable matrix dissipation operator for high mach number ideal MHD and compressible Euler simulations. J. Comput. Phys. 332(1), 274–289 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal mhd equations. J. Comput. Phys. 304(1), 72–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Winters, A.R., Gassner, J.G.: A comparison of two entropy stable discontinuous Galerking spectral element approximations to the shallow water equations with non-constant topography. J. Comput. Phys. 301(1), 357–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yamaleev, N.K., Carpenter, M.H.: A family of fourth-order entropy stable non-oscillatory spectral collocation schemes for the 1-d Navier–Stokes equations. J. Comput. Phys. 331, 90–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Del Rey Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Portions of this paper were previously published in “Numerical Investigation of Tensor-Product Summation-by-Parts Discretization Strategies and Operators” AIAA paper 2017-0530.

Periodic Boundary Conditions for the Global SBP-Operator Approach

Periodic Boundary Conditions for the Global SBP-Operator Approach

The computation of the metrics and Jacobian involve derivatives of the physical nodal locations. The global SBP-operator approach includes the use of interface SATs to couple the derivative values in adjacent elements. Unfortunately, for problems with periodic boundary conditions, the nodal locations are not necessarily periodic, even if the solution is periodic. As a result, naively applying the SBP operator approach will not give the correct solution. In order to use the global SBP-operator approach, the interface SATs for periodic boundary conditions used in the computation of the metrics and Jacobian must be modified. This requires knowledge of the domain’s geometry.

For the test case used in Sect. 12, the size of the domain relative to any point is unity in each direction. In other words, traveling one unit along any of the coordinate directions in physical space will bring you back to the same point, even though the domain is not a unit cube. Therefore, the interface SATs involving nodal locations used at periodic faces only require the addition or subtraction of a unit value. A one-dimensional example is shown in Fig. 4.

Fig. 4
figure 4

Interface SATs used for periodic faces in the computation of metric and Jacobian for the the global SBP-operator approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Rey Fernández, D.C., Boom, P.D., Carpenter, M.H. et al. Extension of Tensor-Product Generalized and Dense-Norm Summation-by-Parts Operators to Curvilinear Coordinates. J Sci Comput 80, 1957–1996 (2019). https://doi.org/10.1007/s10915-019-01011-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01011-3

Keywords

Mathematics Subject Classification

Navigation