Skip to main content
Log in

ALORA: Affine Low-Rank Approximations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2019

This article has been updated

Abstract

In this paper we present the concept of affine low-rank approximation for an \(m\times n\) matrix, consisting in fitting its columns into an affine subspace of dimension at most \(k \ll \min (m,n)\). We present the algorithm ALORA that constructs an affine approximation by slightly modifying the application of any low-rank approximation method. We focus on approximations created with the classical QRCP and subspace iteration algorithms. For the former, we discuss existing pivoting techniques and provide a bound for the error when an arbitrary pivoting technique is used. For the case of fsubspace iteration, we prove a result on the convergence of singular vectors, showing a bound that agrees with the one recently proved for the convergence of singular values. Finally, we present numerical experiments using challenging matrices taken from different fields, showing good performance and validating the theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 14 February 2019

    The original version of the article contained a mistake in Acknowledgement section.

References

  1. Anderson, E., Bai, Z., Bischof, C.H., Blackford, S., Demmel, J.W., Dongarra, J.J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.: LAPACK Users’ Guide. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  2. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bebendorf, M.: Hierarchical Matrices. Springer, Leipzig (2008)

    MATH  Google Scholar 

  4. Bischof, C.H.: A parallel QR factorization algorithm with controlled local pivoting. SIAM J. Matrix Anal. Appl. 12, 36–57 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Boutsidis, C., Mahoney, M., Drineas, P.: An improved approximationalgorithm for the column subset selection problem. In: Proceedingsof the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 968–977 (2009)

  6. Demmel, J.W., Grigori, L., Gu, M., Xiang, H.: Communication avoiding rank revealing QR factorization with column pivoting. SIAM J. Matrix Anal. Appl. 36, 55–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drmač, Z., Bujanović, Z.: On the failure of rank-revealing QR factorization software—a case study. ACM Trans. Math. Softw. 35(2):12:1–12, 28 (2008)

    Google Scholar 

  8. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm. I. SIAM J. Matrix Anal. Appl. 29(4), 1322–1342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm. II. SIAM J. Matrix Anal. Appl. 29(4), 1343–1362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duersch, J., Gu, M.: Randomized QR with column pivoting. SIAM J. Sci. Comput. 39(4), C263–C291 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckart, G., Young, G.: The approximation of one matrix by another of lower rank. Psychometrica 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  12. Edelman, A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9(4), 543–560 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frieze, A., Kannan, R., Vempala, S.: Fast monte-carlo algorithms for finding low-rank approximations. J. ACM 51(6), 1025–1041 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub, G.H., Klema, V., Stewart, G.W.: Rank degeneracy and least squares problems. Tech. Report TR-456, Department of. Computer Science, University of Maryland, College Park, MD (1976)

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Jonhs Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  16. Grigori, L., Cayrols, S., Demmel, J.: Low rank approximation of a sparse matrix based on lu factorization with column and row tournament pivoting. SIAM J. Sci. Comput. 40(2), C181–C209 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, M.: Subspace iteration randomization and singular value problems. SIAM J. Sci. Comput. 37(3), A1139–A1173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu, M., Eisenstat, S.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Matrix Anal. Appl. 17(4), 848–869 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hansen, P.C.: Regularization tools version 4.1 for MATLAB 7.3. http://www.imm.dtu.dk/~pcha/Regutools. Accessed 10 Oct (2018)

  21. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  22. Huckaby, D.A., Chan, T.F.: Stewart’s pivoted QLP decomposition for low-rank matrices. Numer. Linear Algebra Appl. 12(4), 153–159 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kahan, W.: Numerical linear algebra. Can. Math. Bull 9, 757–801 (1966)

    Article  MATH  Google Scholar 

  24. Martinsson, P.G., Quintana, G., Heavner, N., Van de Geijn, R.: Householder qr factorization with randomization for column pivoting (hqrrp). SIAM J. Sci. Comput. 39(2), C96–C115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martinsson, P.G., Rokhlin, V., Tygert, M.: A randomized algorithm for the approximation of matrices. Technical Report Yale CS research report YALEU/DCS/RR-1361. Yale University, Computer Science Department (2006)

  26. Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. Q. J. Math. Oxf. Ser. 11(2), 50–59 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  27. O’Rourke, S., Vu, V., Wang, K.: Eigenvectors of random matrices: a survey. J. Comb. Theory Ser. A 144, 361–442 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pan, C.-T., Tang, P.T.P.: Bounds on singular values revealed by QR factorizations. BIT Numer. Math. 39(4), 740–756 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rudelson, M.: Invertibility of random matrices: norm of the inverse. Ann. Math. 168, 575–600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schneider, P., Eberly, D.H.: Geometric Tools for Computer Graphics. Morgan Kaufmann Publishers Inc., San Francisco, CA (2003)

    Google Scholar 

  31. Stewart, G.W.: The QLP approximation to the singular value decomposition. SIAM J. Sci. Comput. 20(4), 1336–1348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Szarek, S.J.: Condition numbers of random matrices. J. Complex. 7, 131–149 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tao, T., Vu, V.: Random matrices: universal properties of eigenvectors. Random Matrices Theory Appl. 1(1), 1150001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Voronin, S., Martinsson, P.G.: Efficient algorithms for cur and interpolative matrix decompositions. Adv. Comput. Math. 43(3), 495–516 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by H2020 European Research Council (671633) and Agence Nationale de la Recherche (ANR-15-CE23-0017-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Ayala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, A., Claeys, X. & Grigori, L. ALORA: Affine Low-Rank Approximations. J Sci Comput 79, 1135–1160 (2019). https://doi.org/10.1007/s10915-018-0885-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0885-5

Keywords

Mathematics Subject Classification

Navigation