Skip to main content
Log in

Optimal Error Estimates of Penalty Based Iterative Methods for Steady Incompressible Magnetohydrodynamics Equations with Different Viscosities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider the penalty based finite element methods for the 2D/3D stationary incompressible magnetohydrodynamics (MHD) equations with different Reynolds numbers. Penalty method is applied to address the incompressible constraint “\(div \,\mathbf{u }=0\)” based on two different finite element pairs \(P_{1}{-}P_{0}{-}P_{1}\) and \(P_{1}b{-}P_{1}{-}P_{1}b\). Furthermore, the proposed methods are the interesting combination of three different iterations and two-level finite element algorithm such that the uniqueness condition holds. Besides, the rigorous analysis of stability and optimal error estimate with respect to the penalty parameter \(\epsilon \) for the proposed methods are given. Extensive 2D/3D numerical tests demonstrated the competitive performance of penalty methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Davidson, P.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  2. Gerbeau, J., Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  3. Müller, U., Bühler, L.: Magnetofluiddynamics in Channels and Containers. Springer, Berlin (2001)

    Book  Google Scholar 

  4. Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniquess and finite element approximation of solutions of the equations of sationary, incompressible magnetohydrodynamic. Math. Comput. 56, 523–563 (1991)

    Article  MATH  Google Scholar 

  5. Moreau, R.: Magneto-hydrodynamics. Kluwer Academic Publishers, Dordrecht (1990)

    Book  Google Scholar 

  6. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gerbeau, J.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, J., Liu, D., Feng, X., Huang, P.: An efficient two-step algorithm for the stationary incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 21–33 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, G., He, Y., Zhang, Y.: Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics. Numer. Methods Partial Differ. Equ. 30, 1877–1901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, J., Mao, S., Zheng, W.: Anisotropic adaptive finite element method for magnetohydrodynamic flow at high Hartmann numbers. Appl. Math. Mech. 37, 1479–1500 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot { B}=0\) exactly for MHD models. Numer. Math. 135, 371–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, L., Zheng, W.: A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D. J. Comput. Phys. 351, 254–270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ravindran, S.: Linear feedback control and approximation for a system governed by unsteady MHD equations. Comput. Methods Appl. Mech. Eng. 198, 524–541 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Salah, N., Soulaimani, A., Habashi, W.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meir, A., Schmidt, P.: Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36, 1304–1332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, X., He, Y., Zhang, Y.: Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 276, 287–311 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, X., He, Y.: Two-level Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. J. Sci. Comput. 63, 426–451 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Su, H., Feng, X., Huang, P.: Iterative methods in penalty finite element discretization for the steady MHD equations. Comput. Methods Appl. Mech. Eng. 304, 521–545 (2016)

    Article  MathSciNet  Google Scholar 

  20. Su, H., Feng, X., Zhao, J.: Two-level penalty Newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics equations. J. Sci. Comput. 70(3), 1144–1179 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62, 49–73 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen, J.: On error estimates of the penalty method for unsteady Navier–Stokes equations. SIAM J. Numer. Anal. 32, 386–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, Y.: Optimal error estimate of the penalty finite element method for the time-dependent Navier–Stokes equations. Math. Comput. 74, 1201–1216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, Y., Li, J., Yang, X.: Two-level penalized finite element methods for the stationary Navier–Stoke equations. Int. J. Inf. Syst. Sci. 2, 131–143 (2006)

    MathSciNet  MATH  Google Scholar 

  25. An, R., Li, Y.: Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations. Appl. Numer. Math. 112, 167–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, T., Su, H., Feng, X.: Some Uzawa-type finite element iterative methods for the steady incompressible magnetohydrodynamic equations. Appl. Math. Comput. 302, 34–47 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, Q., Su, H., Feng, X.: A partitioned finite element scheme based on Gauge–Uzawa method for time-dependent MHD equations. Numer. Algorithms 78(1), 277–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J.: A novel two two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Layton, W., Lenferink, H., Peterson, J.: A two-level Newton finite element algorithm for approximating electrically conducting incompressible fluid flows. Comput. Math. Appl. 28, 21–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Layton, W., Meir, A., Schmidtz, P.: A two-level discretization method for the stationary MHD equations. Electron. Trans. Numer. Anal. 6, 198–210 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, G., Zhang, Y., He, Y.: Two-level coupled and decoupled parallel correction methods for stationary incompressible magnetohydrodynamics. J. Sci. Comput. 65, 920–939 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2014)

    Article  MATH  Google Scholar 

  34. He, Y.: Two-level method based on fnite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for their valuable comments and suggestions which helped us to improve the results of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Feng.

Additional information

This work is in part supported by The National Key Research and Development Program of China (2016YFB0201304), National Magnetic Confinement Fusion Science Program of China (No. 2015GB110003), the NSF of China (Nos. 11271313, 11471329, 11401511, 11701493, 11871467 and 11461068) and the Natural Science Foundation of Xinjiang Province (No. 2016D01C073).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Mao, S. & Feng, X. Optimal Error Estimates of Penalty Based Iterative Methods for Steady Incompressible Magnetohydrodynamics Equations with Different Viscosities. J Sci Comput 79, 1078–1110 (2019). https://doi.org/10.1007/s10915-018-0883-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0883-7

Keywords

Navigation